Part I.
GENERAL INFORMATION
Project Background

Thailand by Thai Food and Drug Administration, Ministry of Public Health, proposed the APEC Project CTI36/2008T or “Capacity Building for Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)” for the year 2008-2009. This project is the second project providing continuing training activities after the first project or CTI24/2007T (2007-2008).

In response to APEC’s ultimate goal of effective facilitation and liberalization of trade and investment among APEC economies, the key issue of harmonization of standards and regulations has become one of the prime interests because the harmonized standards and regulations would greatly prevent and reduce trade barriers. Regularly, the harmonization of standards and regulations of products is implemented for ‘ready to sale’ or developed products. Unlike other products, “health care products” or “therapeutic products” needs special attention since the initial stage of research and development. It is because these products directly affect people’ health and welfare, and surely to survive in market each therapeutic product must prove itself as effective and safe by evidences shown since the beginning of the research and development process and continuous surveillance throughout its lifecycle. It means that if the product has shown life threatening adverse effects, it would be withdrawn from the market regardless of how much the company invested in research, development or even marketing of the product. Therefore, the promotion and harmonization of international standards and regulations applying to each stage of product’s lifecycle are also critical tools to reduce risks and to ensure the sustainability of healthcare products. Particularly, research and development process has become the most significant step to accelerate availability of safe and effective innovative therapeutic products as people request for them to prevent or solve health problems that increase due to changes of environment and people’ lifestyles.

One of the processes in research and development stage of a therapeutic product, Clinical trial, is a critical research study on human volunteers that is usually used to provide scientific evidence to support the effective and safe use of new pharmaceutical products. More importantly, APEC LSIF’s strategic plan indicates that the area of clinical trials would help in quick and effective creation of life sciences innovation. The harmonization of regulatory practices in this area, i.e. Good Clinical Practice (GCP), which is an international standard that every clinical trial needs to comply with in order to ensure the human subjects’ rights,
safety and the credibility of trial's data, is one of the specified best practices to reach our goals. To ensure that trials are conducted in compliance with GCP and appropriate scientific approach, Drug Regulatory Authorities (DRA) need to review and evaluate drug development in clinical trials and to inspect the conduct of trials at their sites.

The project's objectives are to strengthen DRA's capacity as a part of APEC LSIF's readiness and preparation strategies to handle new therapeutic life science innovations through the best practice area of clinical trials by evaluation of clinical drug development in aspects of quality and safety of investigational pharmaceutical products, inspection of Clinical Trials in compliance with ICH Good Clinical Practice (GCP), and forum for APEC members to discuss and share experiences in controls of clinical trials towards the harmonization of regulatory practices.

The main activities are two training series. The first series include two rounds of 5 day practical workshop on reviewing of drug development in clinical trials, and the second series consist of two rounds of 4 and 5 day practical workshop on GCP inspection.
Workshop Information

The Advanced Workshop on GCP/ Clinical Research Inspection is the second workshop conducted under the APEC Project CTI36/2008T. Its curriculum was designed to cover advanced topics after the “Basic Workshop” that was conducted on 27-30 May 2008 under the prior APEC Project CTI24/2007T.

It has been more than a year for the planning stage. US FDA and Thai FDA designed the first draft agenda by information taken from the basic workshop. The agenda have been adjusted and finalized later accordingly via lots of email exchanges and a teleconference call. Because the workshop format was planned to include on-site mock inspection exercises, Thai FDA approached many research hospitals and leading pharmaceutical companies in Bangkok. We had received favorable responses from Chulalongkorn Hospital, Ramathibodi Hospital, HIV Natherlands Australia Thailand Research Collaboration, Siriraj Hospital, Tropical Medicine Hospital, Roche (Thailand) Co, Ltd., GlaxoSmithKline (Thailand) Co, Ltd., and MSD (Thailand) Co, Ltd. Therefore, we were finally able to identify 5 different clinical research studies and 1 bioequivalence study for the mock inspection exercises. In term of facilitators, beyond the lead facilitators from US FDA, additional facilitators were from public sector i.e. Health Canada and US FDA, and from private sector i.e. Roche Products Limited, GlaxoSmithKline R&D, Merck and Co., inc. Our 7 facilitators played important roles as lecturers for classes and mentors for the small group inspection exercises.

Thai Food and Drug Administration hosted the advanced workshop in Bangkok on 2-6 March 2009. 7 facilitators, 27 participants, and 3 observers are from 15 different APEC economies and countries i.e. Brunei, Canada, Chile, Indonesia, Korea, Malaysia, Peru, Philippines, Singapore, Chinese Taipei, Thailand, United States, Viet Nam, Saudi Arabia, and United Kingdom. The facilitators are from both public and private sectors i.e. US Food and Drug Administration, Health Canada, GlaxoSmithKline R&D, Merck and Co, inc. and Roche Products Limited. The participants are all drug regulatory agencies' officials.

The workshop provided training presentations, case studies, exercises, experience sharing and discussion opportunities according to clinical research and bioequivalence study inspection. The main topics were “Review of Basic GCP and the Elements of a GCP
Inspection”, “Basic Concepts in Bioequivalence (BE)”, “Clinical and Analytical Components of a BE Inspection”, and “On-Site Mock Clinical Investigator Inspection”.

The participants of this workshop also had opportunities to present and exchange updates on clinical trial regulations of their economies and country, and discuss the gaps and challenges for implementation as well as suggestion for future cooperation.
Opening and Welcome Speech

Mrs Werawan Tangkeo
The Deputy Secretary General of Thai Food and Drug Administration
@ The Courtyard by Marriot Hotel, Bangkok
2-6 March 2009

Dr David Lepay, US FDA Senior Advisor for Clinical Science
Dr Martin Yau, Pharmacologist, Office of Compliance, CDER, US FDA
Dr Gerald McGirl, National Expert, Bioresearch Monitoring, Division of Field Investigations, USFDA
Ms Alicja Kasina, Drug Specialist, Inspectorate, Health Canada
Dr Beat Widler, Global Head of PDQ, Roche Products Limited
Ms Joanne North, Director, Clinical Quality Assurance Asia Pacific, Japan and Emerging Markets, GlaxoSmithKline R&D
Ms Larvan Amornwichet, Associate Director, Worldwide Clinical Quality Assurance Resource, Merck and Co., Inc

Distinguished participants,
Ladies and Gentlemen:

It is my great pleasure, as a representative of Thai FDA, to welcome all of you for the “Advanced Workshop on Good Clinical Practice (GCP)/Clinical Research Inspection” jointly organized by Asia Pacific Economic Co-operation (or APEC) and Food and Drug Administration, Thailand.

First of all, I would like to draw your attention to APEC, who has foreseen the important of this training course and granted the approval of the project “Capacity Building for Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)” for the year 2008-2009. It is because APEC realizes that the difference in regulatory practices exists across APEC member economies, even though we have adopted the same ICH GCP standard. APEC hopes that this project could somehow narrow down the gap and lead the way to harmonization of standards in the future.
I would like to recall you the last year workshop or the “Basic Workshop on Clinical Research Inspection” from 27-30 May 2008. That workshop had already trained 24 regulators from 10 different economies and country to learn the principles of clinical research inspection from 2 US FDA experts. It had been an effective kick-off training course, which provided both theoretical and practical knowledge from lecture series, mock inspection exercise and clinical trial site visit. Furthermore, at the end of the workshop, participants had opportunities to brainstorm for the new topics to be included in the advanced workshop.

The second or advanced workshop has been planned by our lead facilitators from US FDA and suggested by our colleagues. It includes the Review of the basic workshop and GCP Inspection, the Basic Concepts in Bioequivalence, the Clinical and Analytical Components of a BE Inspection, and, the last but not least, the “On-Site Mock Clinical Investigator Inspection”. This workshop starting from today to 6 March is attended by 7 facilitators from leading regulatory agencies and industries, and 27 participants from 12 different economies and country, those are Brunei, Chile, Indonesia, Korea, Malaysia, Peru, Philippines, Singapore, Chinese Taipei, Thailand, Viet Nam, and Saudi Arabia.

This workshop has been warmly supported by numbers of parties; those are APEC Life Sciences Innovation Forum, ICH Global Cooperation Group, ASEAN Working Group in Pharmaceutical Development, United States Food and Drug Administration, Health Canada, the HIV Netherlands Australia Thailand Research Collaboration, Chulalongkorn Hospital, Ramathibodi Hospital, Siriraj Hospital, Tropical Medicine Hospital, Roche Products Limited, GlaxoSmithKline R&D, Merck and Co.,inc and Thai FDA. Therefore, on behalf of Thai FDA and organizing committees, I would like to take this opportunity to express my sincere thanks to them all and in particular to our facilitators. I truly appreciate your contribution. We all expect to take the results of this program to develop our regulatory system to ensure the protection of patient safety and promote best quality clinical trials.

Finally, this is an opportune time to declare the official opening of the “Advanced Workshop on Good Clinical Practice (GCP)/Clinical Research Inspection” and I wish all 5 fruitful days of interesting and stimulating discussions and sharing of experiences. Also I wish you have a pleasant stay in Bangkok. I warmly welcome you all again.
Facilitators’ Biographical Sketches

(1) David A. Lepay, MD, PhD

FDA/Office of the Commissioner/Office of Science and Health Coordination/Good Clinical Practice Program
address: 4510 Executive Dr., ste 225, San Diego, CA 92121
USA
Phone : +1 858-550-3850 ext 103
Fax : +1 858-550-3860
Email : david.lepay@fda.hhs.gov

David A. Lepay, M.D., Ph.D., is FDA Senior Advisor for Clinical Science, Science/Health Coordination and International Programs, and also served as Director of Good Clinical Practice Programs within FDA’s Office of the Commissioner from 2000-2006. In his position, Dr. Lepay advises on GCP policy and initiatives at FDA, on the coordination of FDA’s Bioresearch Monitoring program of GCP inspections for human clinical trials, and on international GCP and human subject protection activities, and contributes broadly to GCP education and outreach. Dr. Lepay joined FDA in 1992, and has held previous positions as Director of the Division of Scientific Investigations (1996-2000) and as Senior Medical Review Officer (1992-1996) in FDA’s Center for Drug Evaluation and Research.

Dr. Lepay earned his B.S. degree from Yale College, his M.D. degree from Cornell University Medical College, his Ph.D. in Cellular Immunology from the Rockefeller University, and completed residency training at Brigham and Women’s Hospital and Harvard Medical School. He serves on a number of government working groups and panels and is a frequent speaker on GCP, both domestically and internationally.
(2) **Martin K. Yau, Ph.D.**

Pharmacologist
Division of Scientific Investigations
Office of Compliance
Center for Drug Evaluation and Research
US Food and Drug Administration
Building 51, Room 5322
10903 New Hampshire Avenue
Silver Spring, MD 20993
USA
Phone: 301-796-3381
Fax: 301-847-8748
Email: Martin.Yau@fda.hhs.gov

Dr, Martin K. Yau earned his Doctorate in Biopharmaceutics and Pharmacokinetics at the University of Tennessee Center for the Health Sciences under Dr. Marvin C. Meyer. He has over 25 years of professional experience in the areas of drug development, drug regulatory review, and compliance. Dr. Yau began his career at US FDA in the Division of Biopharmaceutics (currently Office of Clinical Pharmacology). As a reviewer for New Drug Applications (NDAs), his responsibilities included evaluating the results of all phase 1 clinical studies and protocol designs. After five years at US FDA, he moved to industry and joined the Burroughs Welcome Co. in Research Triangle Park, North Carolina, USA for eight years. At Burroughs Welcome Co., Dr. Yau was a senior level pharmacokineticist involved with the designs and development of phase I clinical studies. He returned to US FDA as a pharmacologist in the Division of Scientific Investigations, Office of Compliance, Center for Drug Evaluation and Research (CDER). Dr. Yau has been involved with bioavailability, bioequivalence, and all phase I clinical study inspections from 1995 to present, and has participated in many FDA inspections in the US and internationally.
(3) Gerald N. McGirl, D.D.S.

National Expert, Bioresearch Monitoring
Food and Drug Administration
Office of Regional Operations
Division of Field Investigations
1431 Harbor Bay Parkway
Alameda, CA 94502
USA
Phone: + 510 337 6850
Fax: + 510 337 6702
Email: gerald.mcgirl@fda.hhs.gov

Dr. McGirl is the Bioresearch Monitoring National Expert for the Division of Field Investigations, Office of Regional Operations, Office of Regulatory Affairs, U.S. Food and Drug Administration. Prior to joining FDA in 1990, he practiced the dental specialty of periodontics in San Francisco. He specializes in inspections covering both GCPs (Clinical Investigator, Institutional Review Board, and Sponsor/Contract Research Organization/Monitor programs) and GLPs (Good Laboratory Practices program). He is a member of the international inspections group. He is also a member of the course advisory groups and faculties for FDA Clinical Bioresearch Monitoring (GCPs) and FDA Nonclinical Bioresearch Monitoring (GLPs) courses. He has given numerous GCP and GLP presentations to local, national, international, and university groups.
Alicja received her education in Poland (MSc in Molecular Biology, Jagiellonian University) and Canada (BPharm, Dalhousie University). She has worked over 15 years in medical research in the areas of endocrinology, immunology and microbiology and is a licenced pharmacist. She joined the Public Service in 1996 where she has been active in several roles including Drug Inspector and Medical Devices Specialist for Health Canada. Currently, Alicja is a Drug Specialist with the Health Products and Food Branch Inspectorate. She has performed many inspections of clinical trials in Canada and is an active member of the Pharmaceutical Inspection Co-operation Scheme Joint Visits Programme in Europe. She is a co-author of several research papers and has given several presentations on subjects related to regulatory matters concerning health products.
(5) **Beat Widler, Ph.D.**

Global Head of PDQ
Roche Products Limited
PDQ - 01-V15
Hexagon Place,
6 Falcon Way,
Shire Park,
Welwyn Garden City, AL 7 1TW
UK
Phone: +44 (0) 1707 362851
Fax: +44 (0) 1707 383157
Email: beat_e.widler@roche.com

Dr. Widler who is a Ph.D. in Microbiology has been in the Pharma industry since 1983, his experience covers Drug Regulatory Affairs and Clinical Science. In 1993 he joined the QA department of Hoffmann-La Roche and in September 1997 was appointed International Head of QA.

Dr. Widler is a member in a variety of GCP working parties eg: EFPIA, DIA, EFGCP

(6) **Joanne North**

Director, Clinical Quality Assurance Asia Pacific, Japan and Emerging Markets
Global Quality and Compliance
GlaxoSmithKline R&D
Greenford
Middlesex
United Kingdom
Phone: 44 (0) 208 966 5687
Fax: +44 (0) 208 966 4126
Email: joanne.m.north@gsk.com

Joanne North has worked in the clinical quality assurance field for GlaxoSmithKline (GSK) for approximately 12 years, having worked in both the pharmaceutical and Consumer Healthcare parts of the organisation.

She graduated in Biological Sciences and began her career in academic clinical research. She then progressed to data management, working at the contract research organisation, Parexel before joining the Glaxo company.
(7) Larvan Amornwichet, MSc, MBA

Associate Director, Worldwide Clinical Quality Assurance Resource
Merck and Co., Inc
West Point, PA 19486
USA
Phone: 1 215 652-7691
Email: larvan_amornwichet@merck.com

Manage and direct the overall collaborative partners audit and assessment programs in support of Merck Research Laboratories (MRL) outsourcing activities. The collaborative partners include but not limited to: Laboratories (internal and external); Contract Research Organizations (CROs); Academic Research Organizations (AROs); Central Facilities, Research Partners, and Investigator Sites. Ensure compliance to applicable regulations (ICH-GCP, and local requirements).

Extensively involved in the drug development processes, as well as GXP regulation requirements. Provided support to many FDA regulatory inspection programs which include: Sponsor Monitored inspections for NCE applications, Pharmacovigilance inspections, and pre-approval investigator site inspections. Worked at Merck and Co., Inc. for 21 years with various responsibilities in basic research, manufacturing and clinical research areas. For 7 years prior to joining Merck, worked at Smith Kline Beecham and University of Chicago in the Epstein - Barr virus research laboratory.

Hold M.S. Microbiology, B.S. Biology, and M.B.A., Pharmaceutical Marketing. Affiliate with Drug Information Associate.
Part II.
PRESENTATIONS
Disclaimers

The information within all presentations in this report is based on the presenters’ expertise and experience, and represents the views of the presenters for the purposes of a training workshop.
Background
Regulatory Infrastructure
Current GCP Laws and Practices
Requirements for Ethics – IEC/IRB
Update on Status of GCP Inspection
Future Plans
BACKGROUND

- DEPARTMENT OF PHARMACEUTICAL SERVICES (DPS), MINISTRY OF HEALTH

 is responsible for....

 Implementation of Drug Policies and other related policies pertaining to the Department of Pharmaceutical Services

- Headed by Director of Pharmaceutical Services

- Comprises 2 divisions:
 - Pharmaceutical Care, and
 - Pharmacy Regulatory

REGULATORY INFRASTRUCTURE
- Organisation Chart
CURRENT GCP LAWS & PRACTICES

- The regulatory arm that is mainly involved and is responsible for executing the regulation of clinical trials and GCP inspection – Pharmacy Regulatory Division
 - Regulates the conduct of Clinical Trials in Brunei Darussalam through the Medicines Order 2007 under part IV Section 23 of the order (Gazetted early 2008)

- Medicines Order – ‘any person(s) who wish to conduct a clinical trial must possess the relevant Clinical Trial Import Licence and prior written approval from the Authority’

GUIDELINES

- Guideline for Good Clinical Practice officially launched by Ministry of Health Brunei Darussalam (2008)

- Guideline was formulated in accordance with WHO and ICH
Requirements for Ethics - Committees (IEC/IRB)

- Assurance in the conduct of ethical research in BD is a joint responsibility between:
 - Sponsors
 - Medical & Health Research & Ethics Committee (IEC/IRB)
 - Brunei Darussalam Medical Research Committee, and
 - Regulatory authority

 - i.e. Brunei Darussalam Medicines Control Authority (BDMCA) – regulatory authority executes the regulations on GCP through the Medicines Order 2007 in ensuring the safe use of regulated products that are themselves safe and efficacious in addition to ensuring the implementation of trial related guidelines and legislations.

UPDATE ON STATUS OF CT/GCP INSPECTION

- No clinical trial has yet been conducted in Brunei Darussalam so far
- Thus no GCP Inspection ever conducted
- The Brunei Darussalam Medical & Health Research & Ethics Committee have the intention for the conduct of CT activities to be executed by a mix of resources
FUTURE PLANS

LEGISLATION

◦ To draft the relevant rules for GCP/Clinical Research inspection under the provisions of the Medicines Order 2007

◦ Reference to ICH, WHO, other relevant guides

◦ To regulate the conduct of clinical trials and GCP Inspection, in collaboration with the Attorney Generals Chambers.

THANK YOU
Clinical Trial Inspection Program

Advanced Workshop on Good Clinical Practice (GCP)
Clinical Research Inspection,
2nd to 6th of March, 2009.
Alicja Kasina, Health Canada.

Health Products and Food Branch (HPFB) Mandate and Structure

• Overview of Clinical Trial Oversight
Clinical Trials Regulatory Framework

- **Food and Drugs Act (FDA)**
- **Food and Drug Regulations (FDR), Division 5**
 “Drugs for Clinical Trials Involving Human Subjects”
 - Came into force on September 1, 2001.
 - These regulations are not applicable to Medical Devices or Natural Health Products (NHPs) (other requirements apply).
Clinical Trials Regulatory Framework (cont’d)

- Key aspects of Division 5 of the FDR:
 - Introduction of a 30-day review default period for clinical trial applications;
 - Requirement for REB approvals prior to enrolment;
 - Integration of Good Clinical Practices (GCP);
 - Requirements for clinical trial sites, Qualified Investigators (QI), REBs and Sponsors;
 - Requirement for adverse reaction reporting.

Inspection Program

- Main objectives of clinical trial inspections:
 - Protection of subjects enrolled in clinical trials;
 - Increase confidence that the data collected and subsequently submitted to Health Canada is valid; and
 - Verify compliance to Division 5 of the FDR which includes the principles of Good Clinical Practices (GCPs).
• POL-0030: Inspection Strategy for Clinical Trials
 – Conducted under the authority of section 23 of the *Food and Drugs Act*.
 – Conducted at the following sites:
 • Qualified Investigator (QI) site
 • Sponsor
 • Contract Research Organization (CRO)
 • Site Management Organization (SMO)
 • Research Ethics Board (REB)

• POL-0030: Inspection Strategy for Clinical Trials
 – Up to 2% of all Canadian clinical trial sites are inspected each year.
 – There are approximately 4000 ongoing clinical trials in Canada.
 – Average time of 5 days per inspection.
 – 1 or 2 inspectors per inspection.
 – Inspections are scheduled and announced.
 • Notification occurs a minimum of 5 days before the inspection is conducted.
 – Unannounced inspections may be conducted when deemed necessary.
• POL-0030: Inspection Strategy for Clinical Trials
 – Selection criteria:
 • Number of clinical trials conducted at the site.
 • Number of subjects enrolled in the specified clinical trial.
 • Status of the specified clinical trial.
 • Number of serious unexpected adverse drug reactions at the clinical trial site.
 • Compliance history of the sponsor and/or site.
 • Drug(s) involved in the specified clinical trial.

THANK YOU.
CLINICAL RESEARCH INSPECTION

Miguel Gonzalez G. (PS)
CLINICAL TRIALS - INSPECTION

Regulatory Organization in Chile

MINISTRY OF HEALTH
LEGAL FRAME-BIOETHIC

PUBLIC HEALTH INSTITUTE OF CHILE

DEPARTMENT OF DRUG REGULATION

HEALTH SERVICES (32)

INSTITUTIONAL REVIEW BOARD / INDEPENDENT ETHIC COMMITTEE

CLINICAL TRIALS – INSPECTION UNIT

* Approved by Congress

APEC LSIF PROJECT “Capacity Building
For Drug Regulatory Agencies on Clinical
Trial and Good Clinical Practice (Phase 2)”
MISSION

"Improvement of Public Health, Guaranteeing Quality of Goods and Services through the Strengthening of Reference, Inspection and Regulation."

APEC LSIF PROJECT “Capacity Building For Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)"
ORGANIZATIONAL CHART
DEPARTMENT OF DRUG REGULATION

DEPARTMENT OF NATIONAL CONTROL

MANAGEMENT COORDINATION

PROCESS UNIT

ASISTANT

QUALITY ASSURANCE

SUB-DEPARTMENT OF INSPECTION

SUB-DEPARTMENT OF SAFETY

SUB-DEPARTMENT OF LABORATORY

SUB-DEPARTMENT OF REGISTRY

SUB-DEPARTMENT CONTROL OF PSICOTRÓPICOS

ORGANIZATIONAL CHART
SUBDEPARTMENT OF SAFETY

SUB-DEPARTMENT OF SAFETY

ASISTANT

MD

BE

FV

M

CT

APEC LSIF PROJECT “Capacity Building For Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)"
Laws/Regulation in Chile

- **Law N° 20.120** Scientific investigation (2006)
- **N° 57** normative of clinical trial. (2001)
- **D.S Nº 494** Authorized ethics committees that review biomedical research. (1999)
- **D.S Nº 1.935** Hospital Director’s (administrative authority) authorization the clinical trial. (1993-2006)

Law/Regulation in Chile

- This regulation is to provide a regulatory framework within which clinical trials should be monitored by the ISP in order to comply with the international standards.
- This regulation represents the minimum national requirement when conducting a clinical trial in Chile.
- ISP: Evaluation and Authorization of Clinical Trials that use Drugs not Registered in the Country.
Regulatory Organization in Chile

Clinical Trials – Inspection Unit, Chilean Public Health Institute (ISP)

Objective:
To review authorize and inspection Clinical Trials in order to allow entry into the country of non registered products.

Authority regulatory: ISP

The act by regulatory authority of conducting an official review of documents, facilities, records, and other resources that are deemed by the authority to be related to the clinical trial that may be located at the site of the trial, at the sponsor’s and/or contract research organization’s (CRO’s) facilities, or at other establishment deemed appropriate by the regulatory authority.

(ICH Guideline)
Objectives of Inspection

- Verify that:
 - The rights and well-being of human subjects are protected.
 - The reported trial data are accurate, complete, and verifiable from source documents.

Inspections 2008

- Goals for 2008
 - 10% of the universe of approved clinical trials 2007.
 - 15 protocol and 42 site (realized)
- Goals for 2009
 - 20% of the universe of approved clinical trials 2008.
 - 34 protocol and 76 site (projected)
Finds in inspections

- They do not present express authorization of the director of the center, since it the Law demands 20.120, Art. 10.

- The centers declared in the request and authorized in the resolution do not agree with the sites.

- Product of investigation stored in refrigerator that is not designed for such a use and shared with other products.

- Without program of maintenance not even procedures opposite to cuts of electric power.

- Not have SOPs the maintenance of the chain of cold in the movement of the product of investigation.

Finds in inspections

- Not suitable personnel for the managing, administration and dispensation of the product of investigation.

- Form designed for the accounting of the product of investigation does not allow to determine the quantity used in every site.

- Laboratory examinations and others needed by protocol without record of having been evaluated by principal or representative investigator.

- There are no procedures written on medical emergencies.

- Implementation for medical emergencies deficient and in some cases with losing medication.

- There is no formal training in Good Clinical Practices of the investigator and your team.
Finds in inspections

- Does not exist document that credits the identity and age of the subjects.
- Incomplete Curricula of investigators and team: without certificate of title, without certificate of speciality, in addition without signature and differing dates.
- There is no record on the procedure of enrolamiento of the subjects: from where they are derived, for medical consultation or only to take part in the study.
- In the review of the medical evolution of the subject the differentiation is impeded between(among) records of welfare practice by the procedures of the study.

Thank you

Muchas Gracias !!!

APEC LSIF PROJECT “Capacity Building For Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)”
Updates on Status of GCP Inspection in Chinese Taipei

Chao-Yi Wang
Bureau of Pharmaceutical Affairs, Department of Health, Chinese Taipei
March 2, 2009

Chinese Taipei - Geographic features

- Geographic features
 - South-eastern coast of Asia
 - Total area of 36,179 sq. km
 - Population of 23 millions
DOH’s Core Missions

- Advocate of Health for All
- Educator of Healthy Lifestyle
- Promoter of Healthcare Industries
- Participant of International Health Activities

Current Organization of the Department of Health (DOH)
GCP Laws/Regulations

- Medical Care Act and Enforcement Rules
- Pharmaceutical Affairs Act and Enforcement Rules
- Regulations for Good Clinical Practice
- Pharmaceutical Manufacturer Inspection Measures

Review Process for IND

Archives → BPA → Hospitals, sponsors, CRO application

Primary Evaluation → AC experts Consultation → Evaluation Report

BPA Decision → Advisory Committee → Appeal or Special Concern → IRB/J-IRB

Hospitals, Sponsors, CROs
IND Application (2004-2008)

Distribution of CT Phases (2004-2008)

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>Phase I</td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Phase II</td>
<td>22</td>
<td>57</td>
<td>33</td>
<td>78</td>
<td>32</td>
</tr>
<tr>
<td>Phase III</td>
<td>85</td>
<td>237</td>
<td>69</td>
<td>242</td>
<td>86</td>
</tr>
<tr>
<td>Phase IV</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td>316</td>
<td>120</td>
<td>351</td>
<td>133</td>
</tr>
</tbody>
</table>

P: protocol S: site
IND type analysis (2004 - 2008)

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>TW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>single site</td>
<td>32</td>
<td>32</td>
<td>24</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>TW</td>
<td>25</td>
<td>88</td>
<td>10</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>multiple sites</td>
<td>62</td>
<td>196</td>
<td>86</td>
<td>284</td>
<td>100</td>
</tr>
<tr>
<td>MN trials</td>
<td>52.1%</td>
<td>71.7%</td>
<td>75%</td>
<td>75.6%</td>
<td>75.6%</td>
</tr>
<tr>
<td>% of MN trials, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td>316</td>
<td>120</td>
<td>351</td>
<td>133</td>
</tr>
</tbody>
</table>

P: Protocol, S: Sites

Measures to Improve Clinical Trial Quality

- Conform to international regulations on protection of human subjects
- Improve IRB review quality
- Training programs for Health Professionals
- Establish clinical trial research centers
- Serious Adverse Event Reporting during Clinical Trial
- GCP Inspection
Review process for Clinical Trial Report

- Sponsors - CRO
 - BPA Archives
 - GCP Inspection team
 - Sponsors - CRO
 - Inspection Committee
 - Clinical Trial Center & PI
 - Field Inspection
 - Inspection results & reports
 - Advisory Committee discussions

Statistics for Clinical Trial Reports (2002-2008)

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection cases</td>
<td>37</td>
<td>47</td>
<td>36</td>
<td>34</td>
<td>38</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Disapproval Reports</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Disapproval rate</td>
<td>11%</td>
<td>9%</td>
<td>14%</td>
<td>6%</td>
<td>5.2%</td>
<td>0%</td>
<td>17.4%</td>
</tr>
</tbody>
</table>
Clinical Trials Network in Chinese Taipei

BA/BE Inspection

• Routine Inspection
 – Every Two Year
 – Observational Report
• For Cause Inspection
FutureA Plan

• Foreign Country Inspection
• Put more efforts on for Cause Inspection
• Training Workshop
 – Clinical Trial
 – GCP Inspection
 – BA/BE
• Strengthen the SAE Reporting

Thank You for Your Attention

Current GCP in Indonesia

Bangkok, 2 – 6 March 2009
Directorate of Drug and Biological Product Evaluation

- Sub Directorate of New Drug Evaluation
- Section of New Drug Evaluation on Pathway I & III
- Section of New Drug Evaluation on Pathway II
- Sub Directorate of Copy Drug and Biological Product Evaluation
- Section of Copy Drug Evaluation
- Section of Biological Product Evaluation
- Section of Drug Reevaluation
- Sub Directorate of Special Access Evaluation
- Section of Clinical Trial Evaluation
- Section of Special Access Evaluation
- Section of Administration and Operational

Scope of Regulatory Authority for Clinical Trial

CT Authorization:
- Established since 2001
- Law: Health Law, 1992
 - Consumer Protection Law 1999
- Decree: - NADFC Decree on Procedures for Clinical Trial (CT) No. 02002/SK/KBPOM, February 2001
 - NADFC Decree on Procedures for Bioequivalence Trial No. HK.00.05.3.1818, 29 March 2005
- SOP: 1. Evaluation Process for Application of Clinical Trial Conduct
 2. Evaluation process for Application of Import License
GCP Inspection:

- Law: Health Law, 1992
- Decree: NADFC Decree on GCP Inspection No. HK.00.05.3.4991, 11 Nov 2004
- SOP: GCP Inspection
 - GCP Checklist
 - Manual Checklist
- GCP Inspection Report Form

GCP Inspection Mechanism

NADFC

1. Select Site
2. Contact Site
3. Schedule Site
6. Write Report
7. Classify Inspection
8. Letter to the site

Site Location

4. Inspection activities (e.g. Review Records and facilities)
5. Present Findings
CT APPLICATION IN INDONESIA

GCP Inspection

APEC LSIF PROJECT “Capacity Building For Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)”
Future Challenges

- To increase GCP compliance among parties involved in CT conduct
- To be one of the CT centers for global studies
- To participate in the joint GCP Inspection
- International Collaborations i.e. WHO (Indonesia as GTN/WHO centre for CTA and Clinical Data Evaluation for Vaccine)

Thank you
IND Process and Global Clinical Trials in Korea

Myung-Ah Chung
Drug Evaluation Department
Korea Food and Drug Administration

Contents

1 Introduction of KFDA
2 Regulatory changes relevant to Clinical Trials in Korea
3 Current Status of Clinical Trials in Korea
Attractiveness of Clinical Trials in Korea
Korea Food and Drug Administration

Regulatory Hierarchy

Pharmaceutical Affairs Law

Enforcement regulation of Pharmaceutical Affairs Law

1. Korea GCP
2. Clinical Trial Approval
3. Accrediting Clinical Institutes

Laws

Enforcement

Guidelines
Major Regulatory Changes

1. Dec. 28, 1987
 - Establishment of KGCP (recommendation)

2. Oct. 1, 1995
 - Requirement for compliance of KGCP

3. Dec. 12, 1999
 - Adoption of the Bridging Concept
 - Harmonized to ICH guideline E5
 - Diverse bridging strategies were required
 (enforced Jul. 1, ‘00)

 - KGCP Amendment for Harmonizing with ICH GCP
 - Harmonized with ICH guideline E6
 - Protect the rights and safety of subjects
 - Responsibility of investigator
 (enforced Jan. 1, ‘01)

5. Dec. 3, 2002
 - Introduction of IND System
 - Separation between developmental clinical stage and commercial product approval, such as IND and NDA
 - Participation in international study enabled

 - Organization of Clinical management Team

 - Introduction of Joint-IRB

Clinical Trial Approval Process

- Pre-IND Consultation
 - Effective 2002.12
 - Optional Consultation

- KFDA Process
 - Submission
 - Review
 - Approval
 - Protocol
 - CMC
 - Preclinical
 - IB

- IRB Process
 - Parallel review with KFDA process

- Approval timeline: 30 days

- Contract With Hospital

- IB, CRF, CV
Review Process in KFDA

1. **Applicants**
 - Applicants submit an application.
 - Civil Support Team or KFDA system approves/rejects the application.

2. **Administrative Documents**
 - Civil Support Team or KFDA system approves/rejects the administrative documents.

3. **Technical Documents**
 - Civil Support Team or KFDA system approves/rejects the technical documents (CMC, Pharm/Tox, and Clinical data).

4. **Pharmaceutical Headquarters**
 - Civil Support Team or KFDA system submits a review report.
 - CPAC advises/adopts the review report.

5. **Drug Eval. Dep.**
 - Approves (Rejects) the application.

All application documents should be requisitioned by KFDA online system by electronic documents from Oct. 2nd, 2006.

Essential Elements in Clinical Trials

- Protocol approved by KFDA
- Only at the accredited clinical sites
- Qualified investigator
- Protect the right and safety of subjects
- Informed consent before enrollment of subjects
- Investigational drugs

defined in the Enforcement regulation of Pharmaceutical Affairs Law
Accredited Clinical Institutes

- Purpose
 - To assure the quality of clinical study and institutes
- What are essential to accredit?
 - Appropriate facilities and equipments
 - Pool of personnel to support the clinical study
 - Activities of IRB
 - Education program of GCP
 - Structures and activities to manage the clinical study

Challenges for implementation

- Qualification of Investigator
- Importance of IRB review
- Importance of SOP
- Need for Clinical Research Resources
- Need for Regulatory Service from Authorities
- Need for communication and harmonization with
- Foreign Authorities
Market Share in the World

Number of Clinical Trials (www.clinicaltrials.gov) (Jun.'07)

<table>
<thead>
<tr>
<th>No</th>
<th>Economies/Countries</th>
<th>Number of Clinical Trials</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>11,044</td>
<td>58.1%</td>
</tr>
<tr>
<td>2</td>
<td>Canada</td>
<td>1,771</td>
<td>9.3%</td>
</tr>
<tr>
<td>3</td>
<td>Australia</td>
<td>630</td>
<td>3.3%</td>
</tr>
<tr>
<td>4</td>
<td>Chinese Taipei</td>
<td>538</td>
<td>2.8%</td>
</tr>
<tr>
<td>5</td>
<td>Mexico</td>
<td>531</td>
<td>2.8%</td>
</tr>
<tr>
<td>6</td>
<td>Japan</td>
<td>335</td>
<td>1.8%</td>
</tr>
<tr>
<td>7</td>
<td>China</td>
<td>286</td>
<td>1.5%</td>
</tr>
<tr>
<td>8</td>
<td>Brazil</td>
<td>271</td>
<td>1.4%</td>
</tr>
<tr>
<td>9</td>
<td>Korea</td>
<td>269</td>
<td>1.4%</td>
</tr>
<tr>
<td>10</td>
<td>India</td>
<td>264</td>
<td>1.4%</td>
</tr>
<tr>
<td>11</td>
<td>Hong Kong</td>
<td>173</td>
<td>0.9%</td>
</tr>
<tr>
<td>12</td>
<td>Singapore</td>
<td>150</td>
<td>0.7%</td>
</tr>
<tr>
<td>13</td>
<td>Thailand</td>
<td>133</td>
<td>0.7%</td>
</tr>
<tr>
<td>14</td>
<td>Philippines</td>
<td>71</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Total Number (estimated) 19,000 (about 40 thousand billion won)

- Market scale of Clinical Trials: about 40 thousand billion Won
- Number of Clinical Trials (www.clinicaltrials.gov) (Jun.'07)

Strong Supporting Plan

- **Supported plan for Clinical Center by MOHW**
 - 9 Regional centers designated in 2004-2006
 - Support for Facilities, Operation systems, R&D etc.
 - $0.5 ~ 1 million/center/yr for 5 years

- **Ko-NECT**
 (Korea National Enterprise of Clinical Trials)
 - Clinical Hub of North-East Asia
 - Regional centers will be increased by 15 centers until 2010
 - Regional centers will be network
 - Training center and Development center to support clinical trials
 - MOHW: Ministry of Health and welfare
Korean Investigator’s Contribution to Global Trials

- Prof. Byung-Hee Oh: Cardiology, SNUH
 Global PI of Aliskiren, Novartis
- Prof. Yoon-Ku Kang: Oncology, AMC
 Global PI of Xeloda Phase III study in GC, Roche
- Prof. Young-Joo Bang: Oncology, SNUH
 Global PI of Sunitinib Phase II study in GC, Pfizer
- Prof. Sun-Young Ra: Oncology, YUMC
 AP PI of Sunitinib Phase II study in RCC, Pfizer
- Prof. Sun-Woo Kim: Endocrinology, SMC
 Global PI of Vildagliptin, Phase III study in T2DM, Novartis
- Dr. Jin Soo Lee: Oncology, NCC
 Global PI of ZD6474 Phase III study for LC, AZ
- Prof. Joon Soo Kwon: Psychiatry, SNUH
 Global PI of 11286 Sertindole, Phase III study for schizophrenia, Lundbeck

More than these…..

What’s attractiveness?

- **Attractive Pharmaceutical Market**
 - 10th largest in the world & 2nd largest in AP (excluding Japan)
 - Two digit growth every year: 16.8%, 2005
 - Increasing healthcare expenditure
 - Fastest aging country
 - Life expectation: 75.1yr (M) vs. 80yr (F)

- **Efficient Regulatory Agency**
 - Open communication with KFDA officer
 - Clear review timeline from 1 month up to 4.2 month
 - Clear requirement for review & approval

- **Qualified Investigator and Institution**
 - Global PI in global trials
 - Good Clinical Trial Centers
 - Experienced staff by training
 - Facility: clinic, lab, pharmacy, archiving
 - Efficient IRB process

- **Strong Support from Government**
 - 60M USD government investment by 2010 for 15 regional CTC
 - Korea National Enterprising of Clinical Trial (KoNECT)
 - MOU between KoNECT & J-CLIPNET
Thank you!
GCP INSPECTION IN MALAYSIA

Kamaruzaman Saleh,
Section for Clinical Research and Compliance,
National Pharmaceutical Control Bureau,
Ministry of Health Malaysia

Outline

- Current Progress
- Future Plan of Action
CURRENT PROGRESS

- GCP Inspection is still a voluntary basis
- Joint-Inspection with Foreign Regulatory Authorities to local Research Centres
 - French Health Product Safety Agency (AFSSAPS) (GCP)
 - German GLP Federal Bureau (OECD GLP)
- Joint-Audit with Sponsors to their local Research Centres
 - MSD
 - AstraZeneca

FUTURE PLAN OF ACTION

- Effective monitoring on the implementation of GCP
- Plan to launch GCP Inspection Programme in 3Q 2009
- Preparation of SOPs for the following documents:
 - Directive for GCP Inspection
 - Procedure For Coordinating GCP Inspection
 - Procedure For Conducting An Inspection
 - Procedure For Preparing A GCP Inspection Report
- Qualification Of Lead Inspector And Inspector
- Training For Personnel
- Evaluation Assessment Of Inspectors
- Annex I Procedure For Conducting An Inspection - Bioequivalence Centres
- Annex II Procedure For Conducting An Inspection - Ethics Committee

- Annex III Procedure For Conducting An Inspection - Investigator Site
- Annex IV Procedure For Conducting An Inspection - Sponsor And CRO Site
- Annex V Procedure For Conducting An Inspection - Clinical Laboratories
THANK YOU
Clinical Trials
Regulations in Peru

Hans Vásquez, MD
National Direction of Drugs and Medical Device (DIGEMID)
Ministry of Health. Peru

Thailand, March 2009
Advanced Workshop - APEC
Regulation

- Decreto Supremo No 017-2006-SA. Regulation of Clinical Trials in Peru.
- Decreto Supremo No 006-2007-SA. Modify some requirements of the first regulation.

General aspects

- There are 2 Regulatory Authorities in Clinical Trials:
 1. National Institute of Health (Peru-NIH)
 2. National Direction of Drugs and Medical Device (Regulatory Authority of Medicines). DIGEMID

- Total time for to approve a CT: 40 days (working/business days).

- We approve each Clinical Trial (CT). Not exist IND system or other similar.

- Sponsor (usually CRO) only can start a CT if have:
 1. Document of approval of CT.
 2. Document of approval the importation of investigational products (drugs).
Requirements.

DS 006-2007. Artículo No 66

- Sponsor Form. Application.
- Approval of “Institution”.
- Approval of Institutional Ethics Comitee.
- Protocol (original language and spanish). Last version.
- Investigator’s Brochure (original language and spanish). Last version (actualization each year).
- Budget.
- Sworn declaration of compensation.
- Insurance.
- Supplies List
- Curriculum Vitae of Principal Investigator.
- Other information: requirements of the Authorities.

Peru-NIH/DIGEMID

Perú-NIH
- Reception of requirements.
- Oficial document of approval CT. In charge of review, amendments or extension.
- Review protocol (and ethics aspects) of each CT.
- Inspections.

DIGEMID
- Technical Opinion of safety of investigational product binding to approve a CT (Review of investigational product).
- Inspections (about use and storage of investigational product).
- Importation of investigational product.
- Compasive use.

Coordination PERU-NIH and DIGEMID

Work-Meeting each month
There is more meeting if is neccesary: unusual or difficult trials
Frequently coordination with email and telephone.
Clinical Trials submitted

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of CT submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>84</td>
</tr>
<tr>
<td>2007</td>
<td>123</td>
</tr>
<tr>
<td>2008</td>
<td>176</td>
</tr>
</tbody>
</table>

Source: www.ins.gob.pe

Clinical Trials approved (until Jan 2009)

<table>
<thead>
<tr>
<th>Phases</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>18</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>III</td>
<td>58</td>
<td>82</td>
<td>86</td>
</tr>
<tr>
<td>IV</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

Total: 84 118 132

Source: www.ins.gob.pe
Inspections

- 2007: ~ 36 GCP inspections.
- 2008: ~ 17 GCP inspections.

Perú-NIH coordinate the GCP inspections. DIGEMID participate in GCP inspections in aspects regarding use of Investigational product (storage, manufacture, use and adverse events).

At date, we don’t have approved procedure to conduct GCP inspections. Peru-NIH and DIGEMID reviewers conduct the GCP inspections. Also, DIGEMID Inspectors (GMP and GSP) participate in GCP inspections.

Some observations in inspections

- Storage inadequate
- Without temperature control
- Expired Investigational Products with inadequate storage
- Sites without essentials documents
- Don’t reporting of Adverse events
Process CT Review

- **Requirements**
- **Peru-NIH**
- **DIGEMID**

- **Inv.Brochure + O.Protocol** (Art 68-DS006)

40 working days

30 working days

Perspectives

- Improve the GCP inspections (number and quality). Procedure approved.
- Strengthen the Regulatory Authorities.
- Improve the coordination between Peru-NIH and DIGEMID.
- More contact between regulation of CT and new drug office (recently Peru/DIGEMID was significative change in regulation of new drugs and biologics).
- Understanding Memorandum with others Regulatory Authorities
GRACIAS! Thank you!

HUASCARAN

PUYA RAYMONDI
Country Report on Clinical Trial Regulation & GCP Compliance (PHILIPPINES)

Dr. Tito King – Medical Specialist III
Ms. Marle B. Koffa – Food-Drug Regulation Officer III
Product Services Division
Bureau of Food and Drugs (BFAD)
Department of Health

March 2009
Bangkok, THAILAND

Bureau of Food and Drugs
Filinvest Corporate City, Alabang, Muntinlupa City
Bureau of Food and Drugs

- the national regulatory agency for:
 - Pharmaceuticals
 - Processed Food & Food Supplements
 - Traditional Medicine
 - Vaccines and Biologicals
 - Veterinary Products
 - Medical Devices & Gases
 - Diagnostic Reagents
 - Cosmetics
 - Household Hazardous Substances

VISION

The Bureau of Food and Drugs as a world-class regulatory agency and center of scientific excellence composed of highly competent, efficient, and confident staff with unfettered enforcement capabilities.
MISSION

To ensure the safety, efficacy, purity and quality of processed foods, drugs, diagnostic reagents, medical devices, cosmetics and household hazardous substances through state-of-the-art technology, as well as the scientific soundness and truthfulness of product information for the protection of public health.

ORGANIZATIONAL CHART
FUNCTIONS

- Inspection and licensing of establishments
- Evaluation, testing and registration of products
- Approval of product label prior to marketing
- Monitoring of quality of products in the market
- Evaluation and monitoring of sales promotions and advertisements of regulated establishments and products
- Conduct of periodic seminars on inspection and licensing of establishments, and product registration

Quality Control System

1) The Regulation Divisions (I and II) assure compliance of an establishment to GMP, GDP, and GSP.

2) The Product Services Division assures that a product meets the criteria for safety, efficacy and quality (GCP).

3) The Laboratory Services Division verifies compliance of a product with physico-chemical, microbiological and toxicological tests. Samples tested by LSD include products for registration, government deliveries, complaints and products randomly collected from the market.

4) The Legal and Information and Compliance Division and the Regulation Division I conduct Post-Marketing Monitoring through random sampling of products in the market, verification of labeling information and monitoring of sales promotions and advertisements.
HISTORICAL BACKGROUND

In 1963, in light of the tremendous growth of the food and pharmaceutical industries, the Philippine Congress found it imperative to enact a law that would ensure the safety and purity of food products, drugs, and cosmetics being made available to the consuming public. Thus Republic Act 3720, or the “Food, Drug and Cosmetic Act” was enacted.

To carry out the provisions of R.A. 3720, the Food and Drug Administration (FDA) was created, and its office and laboratories were constructed at the Department of Health (DOH) Compound in Manila.
HISTORICAL BACKGROUND (2)

In December 1982, Executive Order 851 was passed which abolished the FDA and created the Bureau of Food and Drugs (BFAD).

Executive Order 119 s. 1987 reorganized BFAD and mandated the Bureau to be the policy formulating and sector monitoring arm of the Minister of Health pertaining to food products, drugs, traditional medicines, cosmetics and household products containing hazardous substances.

HISTORICAL BACKGROUND (3)

In 1987, the Bureau moved to its present site south of Manila, in Muntinlupa City, and acquired new equipment including sophisticated analytical instruments and built a modern experimental animal laboratory courtesy of a grant from the Government of Japan through the Japan International Cooperation Agency (JICA).
LEGAL BASIS FOR REGULATION

1987 Philippine Constitution
Sec. 12, Article XIII
“The State shall establish and maintain an effective food and drug regulatory system...”

Laws/Regulations Concerning Clinical (Drug) Research
R.A. 3720 (1963) - Foods, Drugs, Devices and Cosmetics Act [as amended by E.O. 175 (1987)]
A.O. 67 s. 1987 - Revised Rules and Regulations on Registration of Pharmaceutical Products
B.C. 5 s. 1997 - Guidelines in Evaluating New Drug Applications

National Guidelines for Biomedical/Behavioral Research*
* Philippine Council for Health Research and Development - Department of Science and Technology (PCHRD-DOST) initiative

So what has been going on?
GCP Compliance Monitoring
GCP Compliance Monitoring (1)

- Currently, BFAD’s team of inspectors for GCP compliance monitoring number only to 5.

- The inspection team ensures both GCP (as well as GLP) compliance of the Bioavailability/ Bioequivalence testing centers in the country.

GCP Compliance Monitoring (2)

- There are four (4) local BA/BE testing centers, namely:
 1) University of Santo Tomas - Center for Drug Research and Evaluation Studies*
 2) University of the Philippines Manila - College of Medicine, Department of Pharmacology and Toxicology Bioavailability Unit**
 3) De La Salle University Angelo King Medical Center Bioavailability Unit*
 4) United Laboratories Bioavailability Unit*

* Privately-owned ** State-run
GCP Compliance (3)

- In the absence of an existing national guideline or Standard Operating Procedure (SOP), the inspection team uses the ICH Harmonized Tripartite Guideline for Good Clinical Practice.

Stumbling Blocks

Current Problems
Current Problems (1)

- Allocated resources for inspection had mainly been focused on Good Manufacturing Practice, Good Storage Practice, and Good Distribution Practice compliance.

- Inspectors ensuring Good Clinical Practice compliance are few (only 5) and mostly have basic know-how and training in this field.

Current Problems (2)

- In the current BFAD structure, ensuring GCP compliance are focused mainly on BA/BE testing centers, and does not cover multi-center clinical trial sites yet.

- After approval of the clinical trial protocol, the responsibility of ensuring that the clinical trial is conducted, recorded, and reported in accordance with the protocol, SOP and GCP is largely delegated to the sponsor.
Current Problems (3)

- Currently, there is no official DOH or BFAD regulation (e.g. guideline, SOP) requiring GCP compliance in all clinical trial sites. Although widely-recognized, the ICH Harmonized Tripartite Guideline is considered "unofficial" without a written government issuance.

Current Problems (4)

- There is selective reporting of trials, including Adverse Drug Reactions (ADRs) by sponsors, investigators and researchers.

- Concerted efforts involving several government agencies to come-up with a solid Philippine Health Research Framework have not yet really taken off.
What Lies Ahead?

Future Plans

Future Plans (1)

- Drafting of an official national guideline in a form of a DOH Administrative Order or BFAD Circular adopting the ICH Harmonized Tripartite Guideline for Good Clinical Practice.

- Further strengthening of BFAD human resources through trainings, and expansion of the BFAD Inspection Team ensuring GCP compliance to cover multi-center clinical trial sites, in addition to the BA/BE testing centers.
Future Plans (2)

- Implementation of the BFAD Integrated Information System (BIIS) to automate/computerize most of the Bureau’s systems and processes, including licensing of establishments and product registration.*

- Creation of a Philippine National Clinical Trial Registry, in coordination with PCHRD-DOST, to ensure that all trials are registered, and thus a minimum set of results will be reported and publicly available.**

* In development stage ** In planning stage

At the end of this Workshop...

GOALS
GOALS (1)

• Learn from other countries’ experiences in GCP-compliance monitoring and clinical trial control, take note of the difficulties and challenges they have faced, and be able to assist in improving the current system (or the lack of it) back home.

• Fully understand the critical roles played by the sponsor, investigator, researcher, IRB/EC, and most importantly, the regulator ensuring GCP compliance.

GOALS (2)

• Acquire the necessary knowledge, techniques and skills to become a more effective clinical research inspector.

• Realize that upholding ethically-sound practices, above all, is the most priority in every clinical trial.
Recent Developments

Recent Developments (1)

- A Department of Health (DOH) Administrative Order had been drafted adopting the ICH Harmonized Tripartite Guideline for Good Clinical Practice.

- The draft document is currently being circulated in the different offices of the DOH for further inputs and comments. It is targeted to be implemented within 2009.
Recent Developments (2)

- The Bureau of Food and Drugs is planning to transfer the activities of the BA/BE testing center audit team (involved in monitoring GCP and GLP compliance) to the GMP Inspection Division of BFAD. This is to consolidate all audit/inspection activities under one division.

- Since the Bureau's GMP Inspection Division is relatively new to GCP and GLP principles, appropriate in-house trainings will be conducted.
 Updates on Status of GCP Inspection: SINGAPORE

2 March 2009, Bangkok

Foo Yang Tong
Deputy Director, Clinical Trials Branch
Health Products Regulation Group
HEALTH SCIENCES AUTHORITY
SINGAPORE

PRESENTATION OUTLINE

• Overview of the Health Sciences Authority
• Drug Development Environment – Regulatory Perspective
• Legislation Changes & GCP Inspection Updates
Singapore

- Total land area: 707.1 sq km
- Population (Jun 08)
 - 4.84 mil (Total)
 - 3.64 mil (Singapore Residents)

Ethnic Groups (Singapore Residents)

- Chinese 75%
- Malay 13.7%
- Indian 8.7%
- Others 2.6%

Overview of HSA
HSA Organisation Chart

Key Functional Areas of Health Products Regulation

Pre-market

Innovative Therapeutics

Medical Devices

Pharmaceuticals

Chinese Proprietary Medicines

Post-market

Clinical Trials

Manufacturing & Quality Audit

Enforcement & Prosecution

Product Evaluation & Registration

Pharmacovigilance

Health Products Regulation Group

Strategy & Policy Devt
Drug Development Environment
Regulatory Perspective

Clinical Trials Regulatory Framework

Legislation for oversight of clinical drug trials:

- Medicines Act (Chapter 176, Sec 18 and 74)
- Medicines (Clinical Trials) Regulations
- Singapore Guideline for Good Clinical Practice (SG-GCP, adapted from ICH E6 on GCP)
- All clinical drug trials conducted locally have to comply with these standards
Clinical Trials Regulatory Framework

- Parallel Submission to both HSA and IRB(s)
- Electronic submission to HSA
- Target Review timeline ~ 4-6 weeks
- Regulatory approval - Clinical Trial Certificate (CTC) - specific for each protocol, PI and site

No. of CT Applications & CTCs issued

<table>
<thead>
<tr>
<th>Year</th>
<th>CT Appls. No.</th>
<th>CTCs Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>133</td>
<td>253</td>
</tr>
</tbody>
</table>

APEC LSIF PROJECT “Capacity Building For Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)”
No. of Approved CT Applications

Clinical Trials Therapeutic Areas (2007)
Clinical Trials Trend

- Multinational or global trials sponsored by pharmaceutical companies/CROs: 70-80%
- Multinational or global trials (Phase II-III) to support NDAs to major regulatory agencies: 50-60%
- Progress in **Oncology** research especially in molecular targeted therapies: 30-35%
 - Advancement in genomics
 - Supported by cancer research centres focusing in early drug development, cancer pharmacology, cancer genetics & cancer endemic in Asia, as well as collaborations with the US National Cancer Institute
- Growing phase I **Clinical Pharmacology** studies: 20-25%

Clinical Trials Trend

Establishment of Phase 1 units in Singapore:

1. Lilly–NUS Centre for Clinical Pharmacology
2. Pfizer Clinical Research Unit, Raffles Hospital
3. Clinical Trials Research Unit, Changi General Hospital
4. Clinical Trials Unit, National University Hospital
5. Investigational Medicines Unit, Singapore General Hospital

- Availability of dedicated resources and facilities in providing full spectrum of scientific and technological expertise to conduct early phase drug development
- Singapore’s Biomedical Sciences programme is key in enabling MNC companies to set up dedicated phase I centres in Singapore to conduct early phase clinical drug development
- Singapore will continue to support more of such studies to complement / strengthen strategy in knowledge-driven research
Regulatory Perspective

In Singapore...

- Relative smallness of agency
 - Need to apply innovative approaches

- Biomedical Sciences Initiatives
 - Being an enabling regulator
Regulatory Perspective

- Science-based, data-driven, risk-based approach
- Compliance to International Regulatory Standards
- Rigorous intellectual property framework
- Active promotion of Good Clinical Practice
- Continually enhancing capabilities to manage emerging technologies and therapies; attention to training and knowledge management in order to keep abreast of scientific advances
- Dialogues with stakeholders (sponsors)

Legislation Changes & GCP Inspection Updates
Legislative Restructuring

Health Products Act

- To consolidate medicines control laws
- Modular approach – more responsive & flexible to deal with different degrees of risk
 - Tighter control for higher risk products
 - Lighter control for lower risk products

Proposed Changes to Clinical Trial Regulations

- To stipulate responsibilities of the sponsor in accordance with SG-GCP.
- To require both ethics and regulatory approval for conduct of clinical trials.
- To simplify the requirements for clinical trials in emergency situations.
- To exempt non-interventional trials.
- To clarify consent requirements for minors and persons of unsound mind.
Proposed Changes to Clinical Trial Regulations

- To convert CTC to lifetime licence.
- To clarify safety reporting requirements for sponsor and PI.
- To revise the clinical trial material labeling requirements.
- To remove ban on financial interest in clinical trial.
- To provide sufficient grounds to carry out GCP inspections.

GCP Inspection Updates

- Planned phase implementation of GCP Inspection Regulatory function
- Strengthen post-approval regulatory system for clinical drug trials with the capacity and capability to assess compliance by organisations and facilities involved in clinical trials to regulations and GCP guidelines.
- Target Q2 2009: Recruitment of qualified GCP inspectors & Drafting of procedures & communication to stakeholders
- Target Q3 2009: Commence GCP Inspections. The initial phase of the GCP Inspection programme will focus on training and education, and increasing quality assurance rather than strict enforcement, unless a blatant violation impacting on safety or rights of trial subjects, serious research misconduct or fraud is discovered.
Thank You!

visit us again: www.hsa.gov.sg
Thailand Update

by

Yuppadee JAVROONGRIT, Ph.D.
Head of International Affairs and Investigational Drug Group
Drug Control Division, TFDA, MOPH, Thailand

Advance workshop on GCP/ Clinical Research Inspection
Courtyard, Marriott Hotel, Bangkok, Thailand
02-06 March 2009

Regulatory Infrastructure/Authority

The Drives

• Current & Trend
 - Increasing participation in…
 - Multinational Clinical Trials
 - Phase I trials
 - Pharmacogenetic study
 - big/major Public Clinical Trials
 - Increasing number of the Clinical Trials

• WHO’s Pre-qualification Programme
• International Standards – APEC, ASEAN, ICH&GCG
• Consumer protection
Global Clinical Trials
Ref.→ Feb.09 (www.ClinicalTrials.gov)

All 69,091 Clinical Studies = 1,121 Studies in ASEAN

Clinical Trials in ASEAN/Thailand
Ref.→ Feb.09 (www.ClinicalTrials.gov)

from 1,121 Clinical Studies in ASEAN
→ 476 Studies (.........Open Studies) are in Thailand

APEC LSIF PROJECT “Capacity Building
For Drug Regulatory Agencies on Clinical
Trial and Good Clinical Practice (Phase 2)”
Regulatory Infrastructure/Authority

The Opportunity

• Training Visit – Health Canada
• Training Course – US FDA-CDER
• Visiting Trips – KFDA, EMEA
• Training Workshops
 - APEC-LSIF “Review of Drug Development in Clinical Trials” and “GCP / Clinical Research Inspection”
 - Industry “Drug Development” by Astra Zeneca “GCP Inspection” by Pfizer,

Regulatory Infrastructure/Authority

The Update after Basic WS

• Amendment the Regulation …
 - requesting “compliance to GCP, GLP, GMP”
 - assigning “GCP Inspector Team”
 - working “for GCP Inspection in the Country”

• Coming activities…
 - formalize the GCP Inspection System
 - implementing Quality System
 - finalizing the Template/Check-list of the Inspection
 - preparation for the Inspection soon

APEC LSIF PROJECT “Capacity Building
For Drug Regulatory Agencies on Clinical
Trial and Good Clinical Practice (Phase 2)”
Best Practice – Strategy for Inspection

The Update after Basic WS

- **The Principle & Target…**
 - compliance to GCP
 - subject protection
 - international standard
 - facilitate the Global-Clinical Trials/Drug Dev.

- **Strategy…**
 - developing Template & SOP for the inspection
 - strengthening the Inspectors
 - starting the real inspection

Wish …

Advance WS

“GCP / Clinical Research Inspection”

Help complete the “Know-how to Do GCP-Inspection”
ขอบคุณค่ะ (Khob Khun Kha)

Thank You !!!
Good Clinical Practice (GCP) System in Vietnam

Department of Science and Training (DST)
Independent Ethics Committee (IEC)
Ministry of Health
T: + 844 6 273 22 49
F: + 844 6 273 22 43
E: quangbyt@yahoo.com

Our Team:
- Prof. Dr. Van Do Duc - Vice Chairman of IEC- MoH
- Dr. Quang Nguyen Ngo – Expert of DST, General Secretary of IEC- MoH
Main points:

1. Introduction
2. GCP System Development in Vietnam
3. What have been done in process...

I- Introduction:

- Relations among Principle Investigator (PI); Health Authority- Government Officers and Sponsors in the proposal, research and development of new medicines, vaccines and medical immunobiological products
- The necessities for the standardization of Clinical research and application of GCP in Vietnam
- Harmonization and international integration
Clinical Trials

Health Authority (DST-I EC)

- Investigator
- Research sites
- Lab.

Principle
Investigator (PI)

Regulations
GCP Guidelines

Evaluation

- Ethic Committee
- Monitors
- Auditors...

Sponsor (Pharmaceutical)

Products

Legal bases:

- Laws on Medicines
- Laws on Science and Technology
- Decrees for the implementation of the laws
- Regulations No 01/2007/QĐ-BYT dated Nov. 1 2007
- Decision No 661/QĐ-BYT dated Feb.2 2008 and No 2626/QĐ-BYT dated Jul.22 2008
- GCP Guidelines (No QĐ 799/QĐ-BYT dated July. 3 2008)
- GCP/ICH.
II- The necessities for the standardization of clinical research

In reality:
- Great and urgent needs for drug trials both domestically and internationally
- Legal bases for the safe and effective exposure to new medical products
- Improving Scientist doctors’ roles using international assistance funds
- Requirements for the integration, acceptance and respect international rules on clinical trials.

The development of a clinical trial network in Vietnam is a difficult task requiring the health authority, investigators and sponsor’s joint efforts.

and also coordinate with other organizations and countries.
III. What have been done or are in process:

Regulation and Training:
- Developing and Issuing Regulations on Clinical Trials (GCP Regulation).
- Developing and Issuing GCP Guidelines follow ICH/ GCP Guideline.
- Training PI & investigators, health officers
- Training for CRA.

Independent Ethics Committee:
- Founding MOH Ethics Committee for the new term with clear definitions of roles, tasks (2008-2012)
- and SOPs for IEC.
- Regular meeting(1 day/month) for review the CL protocols.
III. What have been done or are in process:

Supervision & Inspection:
- Supervision and inspection of CLs running in Vietnam follow GCP standard.
- Set up the GCP inspection team under guidance of MoH.
- Data management and SAE report system/DST-MoH.

Develop GCP system:
- Setting up standards for GCP Units (11 Units)
- Evaluating and licensing GCP Units
- Developing a Project for the establishment of Clinical Research Centers (CRC).
Approval Procedure

Sponsor

Protocol

Product Brochure

Principle Investigator (PI)

Health authority’s approval (DST, DAV, DTM, DT) 30 days

MOH (DST)

EC 30 days

Implementation

Ministerial heads’ approval (15 days)

Validity 1 year

Supervising, Monitoring and Auditing
Sponsor, EC and Health Authority

Thank you for your attention!
Update of GCP Laws/Regulations in Saudi Arabia

Abdulmohsen H. AL Rohaimi,
DDS, APC, MSc, Ph.D
Director of Research and Publication
March 2 – 6, 2009
GCP/advance Clinical Research Inspection Workshop
Bangkok - Thailand
Basic goal of GCP

• Unified standard to facilitate the mutual acceptance of clinical data by different Regulatory Authority.

An insight of GCP Laws/ Regulations in Saudi Arabia

• Institutional review board: done independently in each institution e.g.:
 - Tertiary Hospitals - King Faisal Specialist Hospital & Research Center
 - King Abdulaziz City for Science & Technology
• Ethics committee: NATIONAL COMMITTEE
 - responsibility
 - composition – function – operations – procedure - Records
Opportunity & Needs

Infrastructure
- Med.Hospital Faculty =200
- Resources ; trainees on GCP.

training
- info. Exchange
- Capacity building a network to all Stakeholder
 - research collaboration

Outcome :
- Clinical Research Center – GCP Approved

Opportunity & Needs

As of the first of jan 1st, 2010, the SFDA will require that all clinical trials in Saudi Arabia whether begun before or after that date must be registered with the Saudi Clinical Trial Registry.

Trials beginning after the first of jan 2010 must be registered before recruitment of the first patient"

All clinical trails will follow Saudi GCP guideline

The Current Efforts for GCP Laws/regulation in Saudi Arabia

Saudi Good Clinical Practice (GCP) principles was adapted from ICH guideline

The Current Efforts for GCP Laws/regulation in Saudi Arabia ... continue

Working to build a regulatory framework that...
- Incorporates essential elements of Good Clinical Practices
 - Sound research protocol
 - Informed consent of research subjects
 - Obtain IRB approval and continuing oversight
 - Appropriate qualifications of investigator and staff
 - Monitor and report serious, unexpected, adverse drug reactions through Saudi vigilance center
 - Maintain accurate records
- Gives the authority clear vision to reject, suspend or cancel the authorization of a clinical trial
Ongoing Initiatives

- Implementation of Saudi Vigilance System for the management of ADRs
- Research Ethics: development of standards for Research ethic board
- Clinical Trials Registration and Disclosure

Need for GCC Directive on clinical trial

- Need central database to share information within country and b/w member states
- Trail submission details
- Any amendments
- All ethics approval
- End of trial notification
- GCP inspection conducted
Need for GCC Directive on clinical trail

- Some studies are complex and often multistate.
- Rationalization of requirement for starting of trails
- Minimum standard for conducting of the clinical trails have been captured
- Protection of patient- application to start trail- ethics –handling of the PV data- investigational medicinal products

Thank you
Review of Basic Workshop: Preparing for Inspection

David A. Lepay, M.D., Ph.D.

APEC Advanced GCP Inspection Workshop
March 2, 2009

Key Elements in Preparing for CI Inspection -1-

- General review
 - Key activities in a clinical trial
 - Clinical investigator (CI) responsibilities under GCP
 - National regulations governing CIs
 - Investigator commitments, if applicable (e.g., Form FDA 1572 commitments)
 - Required (and additional) elements of informed consent
Key Elements in Preparing for CI Inspection -2-

- General Review (Continued)
 - Regulatory authority’s “SOPs” for conducting and reporting a CI inspection
 - List of essential documents generally expected at the CI site

Key Elements in Preparing for CI Inspection -3-

- Inspection-specific materials
 - Assignment memo to the inspector
 - Correspondence to the inspected site pre-announcing the inspection
 - Study protocol
 - Investigator’s brochure as needed (if available)
 - (Request) and review certain data listings and case report forms
 - Identify any potential problems
Key Elements in Preparing for CI Inspection -4-

- Develop an inspection/audit plan
 - Questions for opening interview
 - Data and records of (greatest) potential interest
 - Data (values/results) to compare with source
 - “Tools” to assist the inspector
 - Division of labor (especially if inspecting as a “team”)

General Review
Key Activities in A Clinical Trial

 - Identifies 15 key activities
 - CI contributes to most (nearly all) of these
 - Inspection should seek to understand each activity as it is performed at the trial site and the quality with which the CI/site performs that activity

WHO’s 15 Key Activities -1-

1. Development of the Study Protocol
2. Development of Written Standard Operating Procedures (SOPs)
3. Development of Support Systems and Tools
4. Generation and Approval of Study-Related Documents
5. Selection of Study Sites, Qualified Investigators, and Study Site Staff
WHO’s 15 Key Activities -2-

6. Ethics Committee Review and Approval of the Protocol
7. Review by Regulatory Authorities
8. Enrollment of Subjects: Recruitment, Eligibility, and Informed Consent
9. The Investigational Product(s): Quality, Handling, and Accounting
10. Conducting the Study: Study Data Acquisition

WHO’s 15 Key Activities -3-

11. Safety Management and Reporting
12. Monitoring the Study
13. Managing Study Data
14. Quality Assurance of Study Performance and Data
15. Reporting the Study
CI Responsibilities Under GCP -1-

- Targets for Inspection
 - 1. Personally conducting or supervising the study
 - 2. Communication with the ethics committee
 - 3. Informed consent of each study subject
 - 4. Compliance with the protocol

CI Responsibilities Under GCP -2-

- 5. Control of the investigational product(s)
- 6. Maintaining randomization and blinding
- 7. Safety reporting
- 8. Recording, handling, and maintaining clinical study information
- 9. Required reporting
- 10. Medical care of study subjects
National Regulations Governing Conduct of CIs

- May impose additional requirements beyond (or more detailed than) those of international GCP, for example:
 - U.S. requirement for Financial Disclosure by Clinical Investigators (21 CFR Part 54)
 - U.S. requirement for completion by CI of Investigator Statement (Form FDA 1572) for CIs/sites operating under a U.S. research permit (IND)

Form FDA 1572: Statement of Investigator
Form 1572: Includes Investigator Commitments and Signature

<table>
<thead>
<tr>
<th>COMMITMENTS:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I agree to conduct the study(s) in accordance with the relevant current protocol(s) and will only make changes in a protocol after notifying the sponsor, except when necessary to protect the safety, rights, or welfare of subjects.</td>
<td></td>
</tr>
<tr>
<td>I agree to personally conduct or supervise the clinical investigation(s).</td>
<td></td>
</tr>
<tr>
<td>I agree to inform any patients, or any persons used as controls, that the drugs are being used for investigational purposes and I will ensure that this information is obtained as required by 21 CFR Part 50 and institutional review board (IRB) review and approval in 21 CFR Part 56 are met.</td>
<td></td>
</tr>
<tr>
<td>I agree to report to the sponsor adverse experiences that occur in the course of the investigation(s) in accordance with 21 CFR 312.64.</td>
<td></td>
</tr>
<tr>
<td>I have read and understand the information in the investigator's brochure, including the potential risks and side effects of the drug.</td>
<td></td>
</tr>
<tr>
<td>I agree to ensure that all associates, colleagues, and employees assisting in the conduct of the study(s) are informed about their obligations in meeting the above commitments.</td>
<td></td>
</tr>
<tr>
<td>I agree to maintain adequate and accurate records in accordance with 21 CFR 312.62 and to make those records available for inspection in accordance with 21 CFR 312.66.</td>
<td></td>
</tr>
<tr>
<td>I will ensure that an IRB that concides with the requirements of 21 CFR Part 56 will be responsible for the initial and continuing review and approval of the clinical investigation. I also agree to promptly report to the IRB all changes in the research protocol and/or unanticipated problems involving risk to human subjects or others. Additionally, I will not make any changes in the research protocol or conduct of the study without IRB approval, except where necessary to eliminate any immediate hazards to human subjects.</td>
<td></td>
</tr>
<tr>
<td>I agree to comply with all other requirements regarding the obligations of clinical investigators and all other pertinent requirements in 21 CFR Part 312.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIGNATURE OF INVESTIGATOR</th>
<th>DATE</th>
</tr>
</thead>
</table>

WARNING: A willfully false statement is a criminal offense. U.S.C. Title 18, Sec. 1001.3

Informed Consent: Eight Basic (Essential) Elements

- "RESEARCH" including explanation of purpose, duration and procedures
- Foreseeable risks/discomforts to the subject
- Reasonably expected benefits to the subject or others
- Appropriate alternatives and their advantages, if any
- Extent of confidentiality of records; possibility of inspection
- Available treatment/compensation if injury
- Contacts: about the research; subject rights; if injury
- Participation is voluntary; no loss of rights/benefits for refusal or for withdrawal
“SOPs” for Conducting a CI Inspection

- FDA Compliance Program Guidance Manuals (CPGMs)
 - Issued for each type of inspection
 - Current (12/2008) version for CI inspection
 http://www.fda.gov/ora/compliance_ref/bimo/7348_811/default.htm
 - Includes:
 - Background
 - Program management/Implementation instructions
 - Inspectional procedures (Part III)
 - Administrative (including classification) guidance
 - References and program contacts

Other Available “Model” SOPs for CI Inspecting

- European Medicines Agency (EMEA)
 - “Inspection procedures and guidance for GCP inspections conducted in the context of the Centralised Procedures”
 - Access at:
- Pan American Health Organization (PAHO)
 - Access at:
 - www.paho.org/english/ad/ths/ev/GCP-Eng-doct.pdf (English)
 - www.paho.org/spanish/ad/ths/ev/BPC-doct-esp.doc (Spanish)
Essential Documents at the CI Site

- ICH GCP (E6) Section 8 provides a list of “Essential Documents for the Conduct of a Clinical Trial” and guidance on where each document should be filed (with investigator/institution, with sponsor, or with both)
 - Useful as a guide in preparing for the “records inventory” component of an inspection

From ICH E6: Essential Documents at the CI Site -1-

- Investigator's Brochure, including updates
- Protocol, amendments, revisions, (sample CRF)
- Information given to the study subjects
 - Informed Consent form (+ any revisions)
 - Any other written information
- Agreements between involved parties
 - Investigator and Sponsor
- Dated, documented IEC approval(s)
 - Protocol
 - Amendments
 - Informed Consent form
 - Other written information to subjects
 - Recruitment materials
 - Subject compensation
From ICH E6: Essential Documents at the CI Site -2-

- (Regulatory authority authorization[s])
- Curriculum vitae
 - Clinical Investigator
 - Subinvestigators/site staff (List of duties)
- (Laboratory information; normal values, both initial and any updates)
- Shipping records for investigational product and study-related materials
- Instructions for handling investigational product
- Appropriate labeling of investigational product
- Decoding procedures for blinded studies
- (Monitoring reports: study initiation, monitoring visits, close-out)

From ICH E6: Essential Documents at the CI Site -3-

- Relevant communications with sponsor
- Signed and dated Informed Consent forms
- (Signed) Copy of completed CRFs
- Documentation of CRF corrections
- Notification to sponsor (and IEC) of serious adverse events
- Notification by sponsor to CI re: important safety information
- Interim reports to IEC
- Subject Screening “Log”
- Subject Enrollment “Log”
- Investigator product accountability at the site
 - Documentation of return or destruction at end of study
- (Signature sheet: Authorized signatures)
- Study reports
Assignment memo

MEMORANDUM
DEPARTMENT OF HEALTH AND HUMAN SERVICES
PUBLIC HEALTH SERVICE
FOOD AND DRUG ADMINISTRATION
CENTER FOR DRUG EVALUATION AND RESEARCH

DATE ISSUED: [leave blank for date stamp]

FACTS:

TO: Bioresearch Monitor
xx District Office
(or for International)
International Operations Branch
Division of Field Investigations

FROM: DSI Reviewer
Name, Title

THROUGH: Branch Chief, Good Clinical Practice Branch
Division of Scientific Investigations

SUBJECT: FY 2008 - High Priority CDER User Fee NDA Pre-Approval Clinical Investigator Data Validation (Domestic or Foreign Inspection) using the Bioresearch Monitoring Compliance Program (CP 7348.811), linked to Sponsor or IRB inspection (include if applicable)

EIR Due Date: Select one:
45 days from issuance date for domestic
60 days from issuance date for foreign

RE: NDA#:
Sponsor:
Name
Address
City, State/Country, Mail Code
Telephone
Fax
Email

Drug: brand name (generic name)
New Molecular Entity (NME): Yes/No
Protocol: # and Title
Type of Population: i.e., adult, pediatric, geriatric, or other special population
Subjects < 18 years: Yes/No

Note: Please fax a copy of any Form FDA 483 issued as soon as it is available.
Assignment Memo to the Inspector -1-

- Subject of the assignment
- Inspection due date
- Background information
 - Investigational product, route of administration, disease/proposed indication
 - Description of protocol to be inspected
- Site(s) for inspection
 - Rationale for site selection
 - Previous inspectional history
 - Other sites for the same protocol

Assignment Memo to the Inspector -2-

- General instructions to the inspector
 - Guidelines (from CPGM) on what should be reviewed during the inspection
 - Guidance on how much to review
- Specific instructions
 - Any specific concerns of application reviewer(s), identified in a complaint, or identified during development of the inspection assignment
- Headquarters contact information
Study Protocol

- Sections most useful
 - Background (to investigational product; study)
 - Inclusion/Exclusion Criteria
 - Key datapoints/endpoints
 - Objective vs. subjective datapoints
 - Study flow chart
 - Investigational product handling
 - Monitoring plan (if included)
 - Sample CRF and informed consent document

Specific Research Subject Data Listings and/or CRFs

- May be included with the inspection assignment
 - Randomly chosen or “for cause”
- Should generally be available (upon request) for advance review
 - Through application reviewer/team and/or
 - From sponsor
The Inspection/Audit Plan

- An inspection/audit plan is critical to efficient use of time and resources
- FDA does not have or prescribe the use of checklists
 - However, many FDA inspectors will develop/use checklists for their individual purposes
- Learn from our mock inspection exercise
 - Be prepared to discuss during report-out (Day 5)
Questions ?
Review of Basic Workshop: Conducting an Inspection

David A. Lepay, M.D., Ph.D.
APEC Advanced GCP Inspection Workshop
March 2, 2009

A Good Inspection is Built on the “Scientific Method”

- Ask yourself questions/generate hypotheses
- Seek answers/test hypotheses
- Develop new questions from these answers
Conducting the Inspection -1-

- Pre-announced [...or not]
- Present authority/credentials to inspect
- Opening interview (investigator)
- Meet key site staff
 - Plan for secondary interviews of site staff
- Identify a work site

Conducting the Inspection -2-

- Inventory the study records
- Process/systems review: Key trial activities
- Conduct the data audit
 - Verify research subject protection/ethics
 - Informed Consent (forms and process)
 - IEC review and communications
 - Verify investigational product handling and accountability
Conducting the Inspection -3-

- Identify specialized tests, diagnostic testing facilities, and supporting laboratories
 - Consider facilities tour(s)
- Be sure to consider each of the investigator’s responsibilities under GCP (and applicable regulations)

Conducting the Inspection -4-

- Document what was done during the inspection
- Document objectionable findings (deviations from GCP/regulation)
 - Collect “exhibits” to support each observation
 - Protect subject confidentiality in records collected
- Verify and develop a written list of (any) objectionable findings
- Close-out meeting with the clinical investigator
Getting Started - In Greater Detail

Notice of Inspection (Form 482)
Notice of Inspection

- Standard format/form delivered to the inspected party on arrival of the inspector
 - Form FDA 482; available at: http://www.fda.gov/ora/inspect_ref/iom/exhibits/5-1.pdf
- Form includes:
 - FDA field office address and phone number
 - Inspected party: identifying information
 - Date and hour notice was presented
 - Signature of the FDA inspector
 - Statement notifying of inspection and legal authority for the inspection

Inspection Refusals

- May include
 - Refusal of Entry
 - Refusal of Information
- Procedures should be addressed in regulatory agency’s SOPs
 - May include procedure for (a pre-emptive or a follow-up) inspection warrant
Opening Interview: General

- Interview is between the inspector and the inspected party
 - Inspector decides whether others can be present
- CI may want to deliver a “prepared” presentation
 - Try to limit these: i.e., to the extent these are useful to the inspector
 - Don’t let a prepared presentation substitute for an opening interview
- Expect to spend 45-60 minutes with the CI

Opening Interview: Setting the Tone

- The most successful interviews are conversational but purposeful
 - Genuine interest on the part of the inspector vs. assertion of authority
 - Open-ended questions
 - Educational vs. confrontational
Opening Interview: Getting Started

- Communicate the purpose of the regulator’s bioresearch monitoring program and the purpose and logistics of this on-site inspection
 - Assuring GCP compliance
 - In-depth data and record review
 - Speaking to study site staff
 - Learning of site experiences with the protocol/study and any problems encountered

Opening Interview: Some Sample Questions -1-

- Focus on learning about the CI, his/her experiences with the study, and an orientation to the site, staff, and records
 - How many studies has the CI previously conducted?
 - Did the sponsor provide any training?
 - Who else is working for the CI on the study?
 - Who is doing what (when and where)?
 - Were there any problems with recruiting subjects?
 - Any requests for exception to inclusion/exclusion criteria?
Opening Interview: Some Sample Questions -2-

- Any problems with subjects coming in for visits?
- Any difficulties with the protocol/complying?
- Any problems with blinding the study? Could subjects predict which study arm?
- Any serious/unexpected adverse events at the site?
- Did the sponsor come to monitor? Effectiveness?
- Any computer systems used at the site?
- Who organized the files we will be looking at?

Opening Interview: Ending the Interview

- Give CI opportunity to ask questions about the inspection
- Indicate that CI need not be physically present the entire day
 - Establish meeting times with the CI (e.g., end of day AND at end of inspection)
 - Identify key site staff available for assistance if/as needed
- Inspector should request a quiet work space
 - Access to a photocopier
Records Inventory and Process/Systems Review

Records Inventory: To Start

- Often useful for knowledgeable site staff to provide initial orientation to the available records
 - Guide the inspector through a complete hospital/clinic chart and associated case report form (CRF) for one subject
 - Identify all study-related source documents and source data and determine how these relate to the CRF
Records Inventory: Assessment

- Be guided by inspection SOPs and a listing of Essential Documents expected at the site
 - Are any Essential Documents missing/unavailable?
- Identify “source” data/documents
 - Working definition of “source”: The first place that the data are committed to durable medium
 - Distinguish clearly from transcribed data/documents
- Assure that “source” really is “source”
 - Not just created after-the-fact for the inspector/regulator

Process/Systems Review -1-

- Be guided by the key activities (e.g., WHO’s list of “15 key activities”) in a clinical trial
- Review the investigator’s/site’s involvement in each key trial activity and approaches to ensuring the quality of each activity by the CI and at the site
 - Identify any weaknesses that might impact the quality of a key activity
 - Are there associated regulatory violations?
Process/Systems Review -2-

- Process/systems review should also seek to gauge the GCP compliance of the sponsor/CRO and IEC from information available at the CI site
 - Is a follow-up sponsor/CRO or IEC inspection warranted?

Data Audit
Data Audit: Which Data and How Much? -1-

- Initial guide:
 - Inspection SOPs and Assignment Memo
 - In general, review records for 1/3 to 1/2 of the total number of subjects at the site
 - If number of subjects randomized at the site is less than 25, inspector may review proportionally more (or even all) subjects
 - If number of subjects is very large, an appropriate but smaller fraction of subjects will be reviewed

Data Audit: Which Data and How Much? -2-

- Initial guide (Continued)
 - Inspector’s review of protocol and identification of key subjects, data, and timepoints
 - Examples to consider:
 - Subjects who have discontinued prematurely
 - More objective/corroborating data
 - Key endpoints at time zero and at time prescribed in the protocol for primary data analysis
Data Audit: Which Data and How Much? -3-

- Be sure that the data audit addresses:
 - Verification of research subject protection
 - Inclusion/exclusion criteria are met
 - Reporting of safety (and not just efficacy) data
 - Informed consent audit
 - Verification of investigational product handling and accountability

Data Audit: General Approach

- Compare original source data to the CRF entries and/or to the final report(s) submitted by the investigator to the sponsor
- Assess data for quality (ALCOA) and for integrity (3 “C’s”)
- If a significant problem is identified, expand the inspection in that area
Data Quality

- Essential characteristics (ALCOA)
 - Accurate
 - Legible
 - Complete and contemporaneous (recorded at time activity occurred)
 - Original
 - Attributable (to person who generated data)

Data Integrity

- The body of data should be:
 - Credible
 - Internally Consistent
 - Independently verifiable (Corroborated)
Facilities Tours

Facilities Tours -1-

- Determined by inspector (not “required” under FDA’s CI CPGM)
- Possibilities:
 - Examining rooms/equipment
 - Site of specialized procedures
 - Clinical laboratory(-ies)
 - Pharmacy
 - Shipping and Records departments
Facilities Tours -2-

- Purpose
 - Does the facility exist?
 - Indicator of the site's general organization and functioning
 - Can the facility support GCP, protocol compliance, and the development of adequate and accurate subject data/case histories?
 - [Follow-up to subject complaints]
 - Generally not within the scope/jurisdiction of the inspector to “qualify the facility”

Inspector’s On-Site Documentation
Inspector’s Diary

- Each inspector should maintain a diary
 - Record information throughout the inspection
 - Diaries should be written in ink and identify when the entry was made
 - Any changes to the diary should not obliterate the original entry and should identify when the change was made, why, and by whom
 - Diary should identify when, where and from whom exhibits were obtained, and that any photocopy is a true copy of the original document

Exhibits -1-

- Copies of records supporting any observations of a GCP violation
- Include when, where, and from whom copies were obtained and that it is a true copy of a source document: inspector’s diary should make note that the authenticity of source copied was verified
Exhibits -2-

- Confidentiality is essential and FDA works to maintain confidentiality, but subject identifiers are often essential – reason for essential element in informed consent
- Exhibit pages are identified with an exhibit number, name of inspected party, date(s) of inspection, and FDA inspector’s initials
- Identifying information must not cover, deface, or obliterate any data on the record/document

Close-Out Meeting and List of Inspector’s Observations
Close-Out Meeting

- Explain what was inspected
- Present the written list of objectionable findings, (FDA Form 483), if applicable
 - Discuss and explain each finding
- Separately discuss and explain additional findings that were not included on the written list
- Provide the CI with an opportunity to respond to the findings orally or in writing
- Explain additional levels of review before any final decision/classification of the inspection

Form FDA 483

- Listing of inspector’s observations
 - Observations should be significant (GCP violations) and based on pertinent national regulations
 - Observations should not reference guidance (…only violations of regulation)
 - Should not be issued when there are no significant GCP deviations
- Not a final report
Conducting an Inspection: Overall Considerations

Overall Considerations -1-

- Let the inspection build (or diminish) your confidence in the site
- Don’t be intimidated
- Work forward (from inspection preparation and audit plan), in real time (from any violative or suspicious observations), and backward (from what is required for the inspection report)
Overall Considerations -2-

- Be prepared to get technical
 - Medical/scientific support as needed
- Query chain of custody (e.g., subject CRF; investigational product) and/or the sequence of steps in a process
- Don’t be afraid to count/add

Overall Considerations -3-

- Don’t just inventory --- read some of the essential documents (e.g., subject/patient clinic charts; monitoring reports; IEC correspondence)
- Be on the lookout for pages out of order and/or suspicious changes in handwriting or “ink”
Questions ?
Review of Basic Workshop: Inspection Reporting and Classification

David A. Lepay, M.D., Ph.D.
APEC Advanced GCP Inspection Workshop
March 3, 2009

Form FDA 483
Form FDA 483

- Listing of inspector’s observations presented to the inspected party at the close-out meeting
 - Observations should be significant (GCP violations) and based on pertinent national regulations
 - Not a final report

Due Process: Inspected Party’s Opportunity to Respond

- Inspected party may respond orally, in writing, or both
 - Response may occur at the close-out discussion or at any time after the inspection
 - Response at the close-out discussion should be documented in the inspector’s diary
 - Response will become part of the Establishment Inspection Report
FDA and TURBO

- Computerized system (software) for recording inspectional observations (FDA Form 483) and preparing Establishment Inspection Reports (EIRs)
- Standardizes the language used for reporting inspectional observations
 - Assures link to pertinent regulation
 - Presently used for most GCP inspections

TURBO Cites: General Format

- “Failure to...(language of violated regulation). Specifically…”
- “An investigation was not...(requirement not fulfilled). Specifically…”
- Study drug was not...(requirement)...
 - Specifically…”
- Clinical investigator did not...(requirement).
 - Specifically…”
Establishment Inspection Report (EIR)

References

- CPGM Program 7348.811: Part III (Inspectional), Section “P” (EIRs)
- FDA Investigations Operations Manual, Section 5.10
 - Available at http://www.fda.gov/ora/inspect_ref/iom/ChapterText/5_10.html#SUB5.10
Establishment Inspection Report (EIR) -1-

- Prepared after the inspection
- Factual, objective, and free of unsupportable conclusions
- Concise, while covering the necessary information
- Free of opinions about administrative and/or regulatory follow-up
- Written in the first person
- Signed by all who participated in the inspection

Establishment Inspection Report (EIR) -2-

- Includes
 - Narrative report
 - Exhibits
 - Attachments – usually include the inspection assignment and any Form FDA 483 issued
Narrative Report

- May be a “Summary of Findings” if no violative conditions were found
- Same basic areas are always covered (just more abbreviated if no violative conditions)
 - Reason for inspection
 - Administrative information
 - Scope of the inspection
 - Individual responsibilities
 - Inspectional findings
 - Close-out discussion with investigator

Reason for Inspection

- Identify who requested/initiated the assignment
- State the Purpose of the inspection
 - Support review of a product application
 - Real time surveillance of the study
 - External or internal complaint or concern
Administrative Information -1-

- FDA Application number
- Name of investigational product
- Study sponsor
- Protocol title and number
- Dates of study (overall; at site)
- Name of the CI/inspected party
- Location of study site inspected
- Identity of the Ethics Committee

Administrative Information -2-

- Name, title, and authority of the person to whom credentials were shown and any Notice of Inspection was issued
- Persons interviewed
- Who accompanied during the inspection
- Who provided relevant information
- Prior inspectional history
- Other regulated studies performed by the clinical investigator
Scope of the Inspection

- Statement about comparison of data (CRFs or line listings) with the CI’s source documents
- State what records were covered
 - Clinic Charts
 - Hospital Records
 - Laboratory slips; Radiology/Pathology Reports
 - Other Source Documents (ECGs; X-rays)
- Number of files and CRFs Reviewed (out of the total site and study population)

Individual Responsibilities

- Identify study personnel and summarize their responsibilities relative to the study
- Comment on who obtained informed consent and how it was obtained
- Identify who monitored the study and how often
Inspection Findings:
General Statements

- Statement about test article accountability
 - Including identification of records that were reviewed
- Statement whether there was evidence of under-reporting of adverse experiences
- Statement about protocol adherence

Inspection Findings:
Specifics

- Significant observations (if any)
 - Violations of regulations/GCP
Statement of the Close-Out Discussion

- Summarize the discussion of “483” observations and non-483 observations
 - Include identification of who was present at this closing interview
 - Summarize the investigator’s response to these observations

EIR: Other Issues

- Include a copy of the protocol actually used, unless identical to the one in the assignment and have assigner’s concurrence to omit
- Include a copy of the consent form(s) actually used by the clinical investigator
- Include more detail (including exhibits) where violations are observed
- Provide considerable detailed documentation for highly violative inspections
 - May include affidavits, where appropriate
Classifying the Inspection/Inspection Findings

The Hierarchy of GCP

- Goals
- Principles
- Roles
- Responsibilities
- Requirements
- Application to the Specific Clinical Trial
Classifying the Inspection

General -1-

- Inspectional observations/findings are NOT all of equal significance and impact
 - Those that violate the goals and principles of GCP are the most significant
 - Require the most thorough documentation on inspection
 - Are most likely to lead to official (vs. voluntary) enforcement action

Classifying the Inspection

General -2-

- Classification should be done (only) after supervisory review and concurrence
 - FDA inspectors can recommend a classification for GCP inspections, but
 - FDA headquarters reviews the 483, EIR with exhibits, and any follow-up correspondence from the inspected party before assigning a compliance classification and issuing a close-out letter
Approaches to GCP Inspection Classification -1-

- Single classification for the inspection as a whole
 - U.S. FDA approach
 - NAI: No Action Indicated (GCP compliant)
 - VAI: Voluntary Action Indicated
 - OAI: Official Action Indicated (compromise to goals of GCP)

Examples of Violations that May Warrant OAI Classification

- Inadequate Human Subject Protection
 - Failure to inform subjects that they could refuse to participate
 - Subject’s request to withdraw was denied
 - Missing consent documents
 - No documentation of IEC approval
 - Failure of CI to supervise the study with resultant exposure of subjects to unreasonable and significant risk or injury
Examples of Violations that May Warrant OAI Classification

- Submission of false information to FDA or the sponsor
 - Study records are fabricated, altered, or concealed
 - False or misleading reports were prepared and/or submitted
 - Inadequate CI supervision of study personnel who, in turn, fabricated, altered, or contributed false information to study records or reports

Examples of Violations that May Warrant OAI Classification

- Repeated or Deliberate Failure to Comply with the Regulations
 - For example, repeatedly or deliberately enrolling subjects who do not meet entrance criteria because they have conditions that put them at increased risk
 - Repeated or deliberate use of an investigational product by an unauthorized individual
 - Promotion or commercialization of investigational products
Approaches to GCP Inspection Classification -2-

- Grading of each inspectional finding
 - EMEA Approach
 - Critical
 - Major
 - Minor
 - (Note: U.S. FDA does not classify each individual finding)

EMEA Definitions: Grading of Findings -1-

- Critical
 - Conditions, practices or processes that adversely affect the rights, safety, or well-being of the subjects and/or the quality and integrity of data. Critical observations are considered totally unacceptable
 - Remark: Observations classified as critical may include a pattern of deviations classified as major, bad quality of the data and/or absence of source documents. Fraud belongs to this group.
EMEA Definitions: Grading of Findings -2-

- **Major**
 - Conditions, practices, or processes that might adversely affect the rights, safety or well-being of the subjects and/or the quality and integrity of data. Major observations are serious deficiencies and are direct violations of GCP principles
 - Remark: Observations classified as major may include a pattern of deviations and/or numerous minor observations

EMEA Definitions: Grading of Findings -3-

- **Minor**
 - Conditions, practices, or processes that would not be expected to adversely affect the rights, safety or well-being of the subjects and/or the quality and integrity of data
 - Indicate the need for improvement of conditions, practices, and processes
 - Remark: Many minor observations might indicate a bad quality and the sum might be equal to a major finding with its consequences
Mock Inspection Exercise

Mock Inspection: Written Report

- Each team will prepare a written inspection report
 - Form and format of an EIR
 - Covering all basic components of the EIR
 - Reason for inspection
 - Administrative information
 - Scope of the inspection
 - Individual responsibilities
 - Inspectional findings
 - Close-out discussion with investigator
Mock Inspection: Oral Report-Out

- Each team will prepare an oral report-out for presentation on Friday (Day 5)
 - 20 minutes in length - not longer
 - Ability to concisely summarize the inspection is important
- Reports should not cite product or company names
 - Refer to investigational products as “IP” (or IP1, IP2)
 - Refer to sponsor as “Company x”

Elements of Day 5 Oral Report-Out -1-

- Few sentence description of the study
 - Most important points for inspection
- Team’s approach to preparing for inspection
 - Inspection plan and division of labor
- Brief orientation to the CI and site
- What was inspected
- Comment on each of the key trial activities as observed at the site
Elements of Day 5 Oral Report-Out -2-

- Compliance with investigator’s responsibilities
 - Any violations of GCP?
- Brief summary of close-out meeting
- Final comments from the team
 - Any areas of difficulty or surprises during the inspection?

Questions?
In Vivo Bioequivalence

Martin K. Yau, Ph.D.
GLP and Bioequivalence Investigations Branch
Division of Scientific Investigations
Office of Compliance, CDER

Outline

• What is bioequivalence (BE)?
 – significant endpoint data in a BE study
 – BE study design
• Role of BE in the approval process
• Critical points to consider when conducting an clinical study site inspection
• CDER’s BE inspection program
What is bioequivalence?

In plain English...

• Two drug products with the same active ingredient/moiety are considered bioequivalent if they achieve similar drug concentration - time profile in the systemic blood circulation when administered at the same dose
Regulatory Definition

- Bioavailability and Bioequivalence Requirements, 21 CFR Part 320
 - 21 CFR 320.1(a)
 - Bioavailability means the rate and extent to which the active ingredient or active moiety is absorbed from a drug product and becomes available at the site of action.

- Bioavailability and Bioequivalence Requirements, 21 CFR Part 320
 - 21 CFR 320.1(e)
 - Bioequivalence means the absence of a significant difference in the rate and extent to which the active ingredient or active moiety in pharmaceutical equivalents or pharmaceutical alternatives becomes available at the site of drug action when administered at the same molar dose under similar conditions in an appropriately designed study.
• Since measuring the rate and extent to which the active moiety becomes available to the site of drug action is usually not feasible we rely upon the existence of a relationship (when it occurs) between safety/efficacy and concentration of drug in the systemic circulation to demonstrate BE

How is BE demonstrated?

• Same group of Subjects (n=18-36) are administered test (A) and reference (B) drug products in separate dosing periods
• Serial samples of biologic fluid (plasma, serum, urine) are collected from subjects just before and at various times after dosing (e.g., 0.5, 1, 1.5, 2, 2.5,3,3.5,4,6,9,12,14,16,20, and 24 hr post dose)
• The samples are analyzed for drug and/or active metabolite concentrations
• The concentration data are used to generate a drug concentrations-time profile (i.e., a systemic exposure profile)
Pharmacokinetic measures of peak and total exposure of the drug of interest and/or its active metabolite(s) in the systemic circulation are used to demonstrate BE

- C_{\text{max}}
 - peak drug concentration achieved
 - rate and extent of absorption

- AUC
 - Area Under the Curve
 - total amount of drug in the systemic circulation
Other pharmacokinetic parameters determined in a BE study

- **Tmax** (rate of absorption)
 - Time when Cmax is achieved
- **Elimination rate constant**, ke
 - Determined by linear regression of data point in the elimination phase
- **Elimination half-life**, t₁/₂
 - \(t_{1/2} = \frac{0.693}{ke} \)

AUC

\[
AUC_{0-\infty} = AUC_{0-t} + AUC_{t-\infty}
\]

- \(AUC_{0-t} = AUC\) from zero time to time when last plasma sample is collected
- \(AUC_{t-\infty} = AUC\) from time t to infinity
 - \(= \frac{C_t}{ke} \)
 - \((C_t = \text{concentration of the last collected plasma sample}) \)
• Cmax and AUC undergo statistical analysis to determine whether these pharmacokinetic measurements demonstrate BE
 – test (A) and reference (B) products are considered bioequivalent when the 90% confidence intervals for (i) Cmax (A/B) ratio and (ii) AUC (A/B) ratio are within 80-125%
Systemic Exposure Profile

Concentration (ng/ml) vs. Time (hours)

- Test Product - "A"
- Reference Product - "B"

Key:
- Cmax
- AUC

Area Under Serum Concentration Time Curve (0 - 12 hrs.)

- A = 31.2 mcg/ml x hrs.
- B = 30.6 mcg/ml x hrs.

Formulation B: MTC
Formulation A: MEC
Study Design

- BE studies include clinical, analytical and statistical portions
 - clinical
 - subjects are dosed, blood samples are collected
 - analytical
 - blood samples are analyzed for drug concentration
 - statistical
 - analysis of the resulting concentration data
 - may be the same or different facilities
• BE studies usually employ 18-36 normal healthy subjects
 – number of subjects enrolled depends upon the variability of the drug
 – subjects with the target disease are sometimes used
 – All subjects should be audited!

TYPICAL BE STUDY

• Single dose, randomized, crossover study in a fasted state
 – each subject receives the test (A) and reference (B) drug products in separate dosing periods
 • length of time between dosing periods (washout) depends upon the elimination half life of the drug
 – subjects/clinical staff are generally not blinded
 – assignment to dose sequence is random
BE STUDIES - Variations

- Single-dose food study
- Multi-dose study
- Pharmacodynamic (PD) or clinical endpoint BE study
 - drug not intended for systemic absorption, or measurement in the blood not feasible
 - antifungal cream for tinea pedis (athlete’s foot)
 - cure rate, both clinical and mycological cure
- usually a double blind study

BE and the Approval Process
• BE studies are conducted for both NDAs and ANDAs

• NDAs
 – clinical trial versus to-be-marketed formulation
 • links the formulation used in demonstrating safety and efficacy to the formulation that will be marketed
 – change in dosage form
 • tablet already approved, sponsor wants to market a capsule, suspension, or extended release formulation

• ANDAs
 – generic versus innovator formulation
 • if the concentration of the drug in plasma is the same, it is assumed that the generic formulation will demonstrate the same safety and efficacy as the innovator product
Critical Points to Consider When Conducting an Clinical Study Site Inspection

Clinical Conduct

• Regulatory perspective
 – requirements for clinical studies in general
 • 21 CFR Part 50, Protection of Human Subjects
 • 21 CFR Part 56, Institutional Review Boards
 • 21 CFR Part 312, Investigational New Drug Application

• Compliance Program Guidance Manual
 – Program 7348.001, In Vivo Bioequivalence
• Many BE studies for ANDAs do not require an IND [21 CFR Part 320.31(d)]
 – the study is conducted in compliance with Parts 50 and 56
 – reserve samples of the test and reference drug are retained
 • when exempt from the IND regulations, Form 1572 is not required

• Regardless of whether an IND is required, BE inspection must verify the accuracy, quality and integrity of the data
 – All observations that impact study outcomes should be cited on the Form FDA-483
Critical Points

- Subject safety
- Dosing
- Drug products
- Blood draw time
- Sample processing
- Adverse events
- Protocol adherence
- Reserve samples

Subject Safety

- Were the rights, health and welfare of the subjects protected?
 - Was informed consent obtained?
 - verify 100% of the informed consent forms
 - Was adequate medical supervision provided?
Dosing

- Who got what?
 - actual treatment administered
 - “A” or “B”
 - Was the randomization scheme adhered to?
- When did they get it?
 - actual dosing time
 - Who administered it?
 - CI or designee

Drug Products

- Accountability
 - numbers of tablets dispensed, returned, remaining
- Lot numbers
 - verify information provided to FDA
- Control of drug storage area
 - security, temperature, humidity
Blood Draw Time

- Were draw times documented at the time of the event?
 - Were changes justified?
- Were deviations reported?

Sample Processing

- Were samples processed according to the protocol?
 - temperature, centrifugation, within specified time frame
- Were processed (e.g., plasma, serum or urine) samples stored appropriately?
 - storage temperature, location
Adverse Events

• Were all adverse events reported?

Protocol Adherence

• Inclusion/exclusion criteria
 – Were inclusion/exclusion criteria met?
• Were protocol-required screening, in-study and post-study activities conducted?
 – e.g., clinical chemistry/hematology/urinalysis, pregnancy tests, vital signs, EKGs, physical exams
• Was adherence to protocol restrictions documented at each dosing period?
 – BE protocols commonly exclude
 • Rx and OTC drugs 7-14 days prior to dosing and throughout the study
 • caffeine (xanthines)/alcohol 24-48 hours prior to dosing

Reserve Samples

• Retained samples that are representative of the actual drug products used in the study
 – reserve samples help FDA more fully investigate instances of possible fraud in BE testing
 • fraudulent substitution, “the generic drug scandal”
What’s the regulation?

- Reserve sample requirements are defined by
 - 21 CFR Part 320.38 and 320.63 “Retention of BA Samples” and “Retention of BE Samples”

- Guidance document from DSI
 - “Handling and Retention of BA and BE Testing Samples”
 - under the heading “Generics (Draft)”
Core Elements

• Reserve samples must be
 – randomly selected at the study site
 – positively identified as having come from the same sample used in the BE study
 – maintained in sufficient quantity
 • 5x all of the release tests required by the application

• Reserve samples must be
 – stored under conditions consistent with product labeling
 • reserve samples cannot be returned to the sponsor
 – retained for 5 years after the approval of the application
• The request to collect reserve samples is specific to the BE study you are inspecting
 – the reserve samples should be sent to FDA Division of Pharmaceutical Analysis (DPA) in St. Louis for analysis

• These critical points will be discussed in more detail in BE clinical Inspection technique session.
FDA CENTER OF DRUG EVALUATION AND RESEARCH (CDER) ’s BA/BE Inspection Program

CDER’S BA/BE INSPECTION PROGRAM

• The BA/BE inspection program is a part of the CDER Bioresearch Monitoring (BIMO) program.
• BIMO program was established in 1977 to provide oversight of the conduct of studies with regulated drug products in the U.S.
THE CDER’s BA/BE INSPECTION PROGRAM IS LOCATED IN:

- GLP and Bioequivalence Investigations Branch
 Division of Scientific Investigations
 Office of Compliance
 Center for Drug Evaluation and Research
 U.S. Food and Drug Administration
 Building 51, 5th Floor
 10903 New Hampshire Avenue
 Silver Spring, Maryland 20993
 USA

MEMBERS OF THE BA/BE INSPECTION PROGRAM

C. T. Viswanathan, Ph.D. (Chief)

Michael F. Skelly, Ph.D.
Jacqueline A. O'Shaughnessy, Ph.D.
John Kadavil, Ph.D.
Xikui Chen, Ph.D.
Lisa Capron
Dylan Yao, Ph.D.
Gopa Biswas, Ph.D.
Carolyn Lopez, Ph.D.
Linda Kaufman

Martin K. Yau, Ph.D.
Sriram Subramaniam, Ph.D.
Hyojong Kwon, Ph.D.
Samuel Chan, Ph.D.
Abhijit Raha, Ph.D.
Sean Kassim, Ph.D.
Arindam Dasgupta, Ph.D.
Zhou, Chen, Ph.D.
THE OBJECTIVES OF THE BA/BE INSPECTION PROGRAM ARE:

- To verify the quality, integrity, and accuracy of scientific data submitted in support of CFR Part 320 - BA and BE requirements
- To assure the protection of the right & welfare of the study subjects

THE OBJECTIVES OF THE BA/BE INSPECTION PROGRAM ARE:

- To promote quality & consistency across the studies conducted by the pharmaceutical industry, generic & innovators alike
- To foster voluntary compliance
WHAT KIND OF STUDIES DO WE INSPECT?

• BA and BE studies pivotal to support approval of an application.
 – New Drug Application (NDA)
 – NDA supplement
 – Abbreviated New Drug Application (ANDA)

NEW DRUG APPLICATION (NDA)

• BA Studies
 – Oral solid dosage form vs. solution
• BE Studies
 – New formulation vs. marketed formulation
 – Formulation used in clinical trials vs. to be marketed formulation
 – New route of drug administration (e.g., IV, subcutaneous vs. oral)
NEW DRUG APPLICATION (NDA)

- Other Phase I studies that are important to support labeling:
 - Pharmacokinetic (PK) studies
 - Pharmacodynamic (PD) studies
 - PK-PD link studies
 - In vitro drug metabolism and drug-drug interaction studies

ABBREVIATED NEW DRUG APPLICATION (ANDA)

- BE Studies (generic product vs. innovator product)
 - In Vivo
 - Single-dose fasting study
 - Multi-dose fasting study
 - Food study
 - In Vitro
 - Nasal aerosols and nasal sprays
WHO DO WE INSPECT?

- Contract Research Organizations (CROs)
- Universities
- Study Sponsors (In-house studies)

REASONS FOR INSPECTING A STUDY SITE

- OAI classification on last inspection
- No inspection history (new sites)
- Suspicion of false or fraudulent data
- Complaint
- Pivotal study
TYPE OF INSPECTIONS

• Domestic Inspection
 – Routine inspections
 – For cause inspections
• Foreign Inspections

FOR CAUSE INSPECTION

• The study contains data that appear unrealistic.
• Questions about the integrity or quality of the BA/BE data, and/or results of drug assays.
• There are evidences of selective reporting of study data.
INSPECTION TEAM

• FDA field investigator from the Office of Regulatory Affairs (ORA)
 – Domestic inspections: investigator selected from ORA District Office where the study site is located
 – Foreign inspections: investigator selected from the ORA foreign inspection cadre
• FDA scientist from the Division of Scientific Investigations (DSI), CDER

INSPECTION NOTIFICATION

• Routine domestic inspections
• Routine foreign inspections
• For cause inspections
INSPECTION PROCEDURE

• Inspection Opening Meeting
 – Issue of the Notice of Inspection
 (Form FDA-482)
 – For domestic inspection only
 – Credential of FDA investigators

• Inspection of source document and records

• Inspection Closing Meeting
 – Discussion Items
 – Objectionable inspection findings
 (Form FDA-483)

CDER’s INSPECTION CLASSIFICATION

• OAI Classification

• VAI Classification

• NAI Classification
INSPECTION REFERENCE DOCUMENT

• Compliance Program Guidance Manual (CPGM), 7348.001- InVivo Bioequivalence
 – This CPGM describes the procedures used by FDA staff in performing BA, BE, and/or PK study inspections.

INSPECTION REFERENCE DOCUMENT

• FDA Guidance for Industry, Bioanalytical Method Validation
• FDA Guidance for Industry, Handling and Retention of BA and BE Testing Samples
 – Http:www.fda.gov/cder/guidance/index.htm
• 21 CFR Part 320 - Bioavailability and Bioequivalence Requirements
CLINICAL AND ANALYTICAL SITE INSPECTION

- BA/BE study inspection will be conducted at the clinical site and/or analytical site:
 - Clinical site
 - Clinical testing facility where subjects are dosed and blood samples are collected.
 - Analytical site
 - Analytical laboratory where biological fluid collected in the BA/BE studies are analyzed for drug concentration.

INSPECTION COVERAGE

- Part 1: Facilities and Procedures
 - Applicable to clinical and analytical facilities
- Part 2: Clinical data and operations
- Part 3: Analytical data and operations
Questions?
In Vivo Bioequivalence Inspection Techniques

Martin K. Yau, Ph.D.
GLP and Bioequivalence Investigations Branch
Division of Scientific Investigations (DSI)
Office of Compliance, CDER

Clinical Bioreseach
Monitoring BR2001A

Objectives

• Provide techniques for auditing an in vivo bioequivalence (BE) study
 – What records should you review?
 • use the compliance program as your guide
• Explain how to document findings on the 483 and in the Establishment Inspection Report (EIR)
 – examples from DSI Bioequivalence (DSI-BE) inspections
CP 7348.001 - *In Vivo* BE

- This Compliance Program Guidance Manual describes the procedures used by FDA staff in performing BA, BE, and/or pharmacokinetic study inspections.

Program Objectives

- Your inspection should...
 - verify the accuracy, quality and integrity of data from BE studies submitted to FDA, Center for Drug Evaluation and Research (CDER)
 - ensure that the rights and welfare of human research subjects are protected
 - ensure compliance with the regulations
 - 21 CFR Parts 320, 312, 50 and 56
CP 7348.001 - Attachment A

- Describes the inspectional focus in general identifies the minimum information that must be obtained during an BA/BE inspection
 - please note...
 - DSI-BE inspection assignment memos usually provide additional instructions specific to the study or site.

- Attachment A is divided into three parts
 - Part I - Facilities and Procedures
 - applicable to clinical and analytical facilities
 - Part II - Clinical Data and Operations
 - Part III - Analytical Data and Operations
• Inspection must include a comparison of the source data at the clinical site with the data submitted to Regulatory Agency
 – Regulatory Agency will provide the background documents for comparison.
 • Please document the number of records reviewed and whether any discrepancies were found.

What records should you review?
First and foremost...

- Review records that directly impact study outcomes
 - Dosing
 - Can you unambiguously verify “Who got what?”
 - Specimen sampling (e.g., blood draws, urine collection)
 - Documentation contemporaneous with event?
 - Are changes justified?
 - Specimen handling, processing and storage

Next verify whether the site...

- Adhered to the protocol
 - inclusion/exclusion criteria (IEC)
 - protocol restrictions
 - abstention from Rx/OTC drugs, caffeine
 - fasting requirements
 - pre-, in- and post-study activities
- Accounted for drug receipt and use
Then compare...

- Source documents to the final report
 - drug lots used
 - document any discrepancies
 - adverse events
 - All reported?
 - look for AEs such as vomiting or diarrhea soon after dosing
 - concomitant medications or intercurrent illness
 - Were these accurately reported?

Then compare...

- Source documents to the final report
 - pharmacokinetic (PK) blood draw times and results of protocol required testing
 - spot check, expand review if problems found
 - The actual sampling time should be used in determining the PK parameters.
Don’t forget the...

- Correspondence file
 - can provide a wealth of information
 - problems with study conduct
 - requests to exclude specific data

Finally, determine whether...

- The site complied with the regulations
 - Was subject safety protected?
 - informed consent forms
 - review informed consent forms of all subjects and
document your review in the EIR
 - medical supervision/delegation of authority
 - records of IRB approval of the protocol
 - Were reserve samples randomly selected and
retained on site?
Documenting your findings

• We’ll provide specific DSI-BE inspectional findings that focus on the critical points to consider for a BE study inspection
 – FDA Form-483s and EIR exhibits
• Your inspection should thoroughly address the issues raised in the following slides
 – please document your findings concerning these issues in the EIR

Dosing Records

• Was the treatment administered to each subject documented at the time of dosing?
 – open-label versus blinded studies
• Was the actual dosing time documented?
DSI-BE Inspection Findings

• Example: Inspection at Eastern Europe
 – “A” or “B” not documented
 • randomization scheme is the intended dose and not the actual dose
 • Who got what? must be unambiguous
 – Actual dosing time not documented
 • impact on PK calculations
 – Form FDA-483
Sample Data

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Date</th>
<th>Time of sampling</th>
<th>Clock time (24-hour clock)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07/06/09</td>
<td>1.0 h</td>
<td>07:00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>07/06/09</td>
<td>2.0 h</td>
<td>08:00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>07/06/09</td>
<td>3.0 h</td>
<td>09:00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>07/06/09</td>
<td>4.0 h</td>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>07/06/09</td>
<td>5.0 h</td>
<td>11:00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>07/06/09</td>
<td>6.0 h</td>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07/06/09</td>
<td>7.0 h</td>
<td>13:00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>07/06/09</td>
<td>8.0 h</td>
<td>14:00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>07/06/09</td>
<td>9.0 h</td>
<td>15:00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>07/06/09</td>
<td>10.0 h</td>
<td>16:00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>07/06/09</td>
<td>11.0 h</td>
<td>17:00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>07/06/09</td>
<td>12.0 h</td>
<td>18:00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>07/06/09</td>
<td>13.0 h</td>
<td>19:00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>07/06/09</td>
<td>14.0 h</td>
<td>20:00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>07/06/09</td>
<td>15.0 h</td>
<td>21:00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>07/06/09</td>
<td>16.0 h</td>
<td>22:00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>07/06/09</td>
<td>17.0 h</td>
<td>23:00</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. There are no source documents to support information recorded in CRFs for:
 - Time of study drug administration
 - Time of blood collection
 - Adverse event occurrence
 - Medications used during specified periods

2. Study records do not document closing of subject according to randomization schedule.

3. Sample handling after collection from subjects and prior to transfer to clinic site is not documented.

4. Some subjects were allowed to participate in studies with laboratory staff, which reported exclusion for example in a subject due to a high blood level of medication.

5. Temperature of the freezer containing study samples is not recorded on non-study weekend days.

6. There is no documentation of expiration of activity for various tasks during study conduct.
Blood Draw Records

- Was the actual time of the PK blood draws documented?
- Were deviations from scheduled draw times reported?

DSI-BE Inspection Findings

- Blood draw times not documented
 - see example of inspection in Eastern Europe
- Blood draw times changed without justification
 - see example at Baltimore, MD (minocycline)
 - consequences on PK calculations
 - Form FDA-483s
Sample Data Table

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Date</th>
<th>Time of sampling</th>
<th>Clock time (24-hour clock)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.0h</td>
<td>01:00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.0h</td>
<td>02:00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3.0h</td>
<td>03:00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4.0h</td>
<td>04:00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.0h</td>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8.0h</td>
<td>08:00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10.0h</td>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>12.0h</td>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>14.0h</td>
<td>14:00</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>16.0h</td>
<td>16:00</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>18.0h</td>
<td>18:00</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>20.0h</td>
<td>20:00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>22.0h</td>
<td>22:00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>24.0h</td>
<td>24:00</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>30.0h</td>
<td>00:00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>30.0h</td>
<td>00:00</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- 09:10
- 10:10
- 11:00
- 11:45
- 12:15
- 12:30
- 14:15
- 16:10
- 16:30
- 16:50
- 17:00
- 18:20

09:20 Daylight saving time.
Specimen Handling

• Are there procedures for linking subjects and specimens?

• Are there procedures for processing collected specimens?
 – Any specific stability concerns for the analyte of interest (e.g., temperature, light)?

• Were there acceptable storage conditions before and after processing, as well as during transit to the analytical laboratory?
DSI-BE Inspection Findings

- See example regarding inspection at Phoenix, AZ
 - subject samples not processed within the protocol required timeframe
 - include description of processing blood to serum or plasma, anticoagulants
 - analytical consequences
 - affected 25% of the subject samples
 - Form FDA-483
Table

<table>
<thead>
<tr>
<th>Study Number</th>
<th>Date Initiated</th>
<th>Date Closed</th>
<th>Start Date</th>
<th>End Date</th>
<th>Site Code</th>
<th>Site Name</th>
<th>Investigator</th>
<th>Study Title</th>
<th>sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>08/20/2008</td>
<td>12/15/2008</td>
<td>01/01/2009</td>
<td>06/30/2009</td>
<td>123</td>
<td>ABC</td>
<td>Smith</td>
<td>Clinical Study</td>
<td>XYZ Corp</td>
</tr>
</tbody>
</table>

Comments

A review of the study records revealed the following:

1. The investigator did not follow the protocol accurately.
2. The study was not conducted as per the approved protocol.
3. The data collected were not consistent with the protocol.
4. The trial was not conducted in accordance with Good Clinical Practice (GCP).

Findings

1. The study was not conducted as per the approved protocol. The investigator did not follow the protocol accurately.
2. The data collected were not consistent with the protocol.
3. The trial was not conducted in accordance with Good Clinical Practice (GCP).

Next Steps

1. The investigator must be properly trained.
2. The study protocol must be reviewed and updated.
3. The data collected must be re-evaluated.
4. The study must be conducted in accordance with Good Clinical Practice (GCP).

APEC LSIF PROJECT “Capacity Building For Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)”

99 of 16
DSI-BE Inspection Findings

• Example at Research Triangle Park, NC
 – thawed samples received by analytical lab
 – analytical consequences
 – Form FDA-483
Protocol

- Were the inclusion/exclusion criteria followed?
- Were protocol-required screening, in-study and post-study activities conducted?
DSI-BE Inspection Findings

- See example regarding megestrol acetate, at Lincoln, NE
 - protocol exclusion criteria not followed
 - subjects with a vegetarian diet enrolled in the study, discuss potential impact on study
 - recommended excluding these subjects
Subjects’ Records

- Were all adverse events reported?
- Was there any unreported concomitant medication or intercurrent illness?
DSI-BE Inspection Findings

- Example regarding clomipramine in Canada inspection
 - inconsistent handling of subjects that vomited
 - protocol required exclusion of subjects that vomited within 24 hrs of dose, only one of three subjects that vomited were excluded
 - impact on drug absorption
 - Form FDA-483
DSI-BE Inspection Findings

- Example regarding clotrimazole troche in South Africa inspection
 - subject received a concomitant drug that contained the same active ingredient as the study medication
4. Patient Number 1038 was enrolled (11/11) one day before the Informed Consent Form was signed (11/11).

5. Failure to comply with the protocol in that patient number 1038 received IV () onwards and should have been excluded from Day 21 evaluations.

6. Failure to document test results for patient # 1035, 1034, and 1040 at baseline.

7. Failure to comply with the protocol in that patient number 1043 was examined one day out of visit window on Day 15.

8. Failure to comply with the protocol in that patient number 1038 was receiving an anti-fungal drug (crem) on 11/6/11 onwards and should have been excluded from the study.

Drug Products

- Are there adequate records concerning the receipt and use of study drugs?
- Are the lot numbers the same as those reported to FDA?
Reserve Samples

• Are the reserve samples representative of the products used in the study?
 – Positively identified?
 • please collect a written assurance that the reserve samples came from the same samples as used in the BE study
 – as per 21 CFR 320.38(g)

Requirements

• Randomly selected at the testing facility performing the BE study
 – both test and reference products
 • pre-selection by a sponsor, third-party packager, SMO or CRO managing the study is not allowed
Requirements

- Appropriate storage
 - retained at the testing facility under conditions consistent with product labeling
 - reserve samples cannot be returned to the sponsor
 - storage by an independent, third-party following dosing is permitted
- Retention period
 - 5 years after the approval of the application

Special Considerations

- Unit dose packaging
 - minimum 24 unit doses plus bulk
- Blinded studies
 - enough labeled sets to conduct the study and retain as reserve samples
 - sealed code for use by FDA
- Additional shipments
 - select reserve samples from each shipment
DSI-BE Inspectional Findings

- Example:
 - clinical site failed to select and retain reserve samples
 - correspondence file contained a memo stating that “The sponsor releases Contract Research Organization (CRO) from any obligation to collect reserve samples.”
DSI-BE Inspection Findings

- Example regarding miconazole inspection
 - SMO selected and retained reserve samples instead of the clinical site
 - discuss lack of sealed code for FDA to break the blind
 - multi-site clinical endpoint blinded study
To: Study File
From: Valerie
Subject: NIAIDANDA Regulatory Audit

Date: August 1

Re: Study File and retails samples

Study File 138A4-18, randomized, multicenter, parallel group study comparing the therapeutic equivalence and safety of the two treatments:

- Treatment A, new formula (new drug), was conducted by
- Treatment B, old formula (reference), was conducted by

The test and reference drug product lot numbers used in the study are:

- Test product:
 - Lot 200416

- Reference product:
 - Lot 52545
 - Lot 210643

Exhibit 1A - page 1 of 1

SMO:

Indicates that retails samples are being held by

HINT:

SMO:

Reference product lot 210643 and reference product lot 22245. All
reference product lot 210643 samples supplied to
were used to facilitate the study. Retains are not currently held for that lot. During the course of the
study, efforts to secure additional samples were unsuccessful because supports and samples supplies of lot 210643 were exhausted.

However, please be advised that

Lot 54, samples were also on hand. Please note that 54 capsules of lot 210643 were
recently shipped to the officers of FDA.

In the context of FDA inspection considering a site inspection. It is reported that these samples were given to

FDA documents for inspection purposes.

APEC LSIF PROJECT “Capacity Building
For Drug Regulatory Agencies on Clinical
Trial and Good Clinical Practice (Phase 2)”
Additional Points to Consider

Please comment on...

• Quality of the source documents
 – Are they organized, complete, legible?
 – Do they provide an assurance that all subjects existed?

• Protocol changes
 – Were they approved by the IRB before implementation?
 • please document any differences between the protocol at the site and the one provided by DSI-BE
Please comment on...

• Competency of the study personnel
 – Is staff trained to perform assigned tasks?
 • If inadequate training impacts study outcomes, please document your findings on the 483.
 – particularly important for clinical endpoint BE studies

 • (Example: tretinoin cream, 1998 inspection, non-physician staff responsible for scoring acne lesions in a clinical endpoint BE not adequately trained, no documentation on site to verify validation of the individual.)

Please comment on...

• Facility conditions
 – Is there adequate work space, separation of operations?
 – Are there written procedures for study conduct?
 – Is the clinic arranged to prevent ingress of unauthorized food, drugs, etc.?

 • (Example: CRO in Miami, subjects had access to food preparation areas)
Please comment on...

• Electronic records/signatures
 – Is an electronic system used to collect data?
 • identify the system and summarize its use
 • Example: Inspection at Austin, TX. Inspected high level systems documentation, trustworthiness of the software, qualifications of persons developing/supporting computerized systems

Please comment on...

• Sponsor monitoring visits
 – only applicable to studies under an IND
 • reminder: many BE studies are exempt from the IND regulations
To sum it all up...

What should you look for?

• Examples of non-compliance
 – failure to document “Who got what”
 – failure to accurately document PK blood sampling times
 – PK blood samples compromised
 • improper identification, handling, storage
What should you look for?

• Examples of non-compliance
 – failure to report AEs
 • especially vomiting and diarrhea, which may affect absorption and elimination of drugs
 – failure to report concomitant medications or intercurrent illness
 – protocol inclusion/exclusion criteria not followed
 – protocol restrictions not met

What should you look for?

• More examples of non-compliance
 – inadequate or missing informed consent forms
 – inadequate medical supervision
 – inadequate drug accountability
 – failure to randomly select and retain reserve samples
Quiz Questions

In Vivo Bioequivalence Inspection Techniques

Critical issues to address during an *in vivo* bioequivalence study inspection include:

A. Who got what drug treatment?
B. When were specimens collected (e.g., PK blood draws)?
C. Where’s Waldo?
D. both A and B
In Vivo Bioequivalence Inspection Techniques

Dosing records in an open-label in vivo bioequivalence study must document:

A. the treatment administered to each subject at the time of dosing
B. the actual time the treatment was administered
C. both A and B
D. none of the above

In Vivo Bioequivalence Inspection Techniques

Reserve samples for an in vivo bioequivalence study conducted at a CRO must be:

A. randomly selected by the sponsor
B. positively identified as having come from the same sample used in the bioequivalence study
C. retained by the sponsor
D. all of the above
In Vivo Bioequivalence
Inspection Techniques

Examples of non-compliance for an in vivo bioequivalence study:

A. failure to document “Who got what”
B. integrity of PK blood samples compromised
C. failure to report AEs (especially vomiting and diarrhea, which may affect drug absorption)
D. all of the above

In Vivo Bioequivalence

What is Cmax?

A. the point in time at which the maximum plasma concentration of the test drug is achieved
B. the maximum concentration of the test drug achieved in the plasma
C. the rate and extent to which a drug is made available at the site of action
D. the area under the plasma concentration curve
In Vivo Bioequivalence

What is Tmax?

A. the time at which the maximum plasma concentration of the test drug is achieved
B. the maximum concentration of the test drug achieved in the plasma
C. the area under the plasma concentration curve
D. none of the above

In Vivo Bioequivalence

In vivo bioequivalence studies are important to the approval process of:

A. NDAs (e.g., clinical trial *vs.* to-be-marketed formulation)
B. ANDAs (e.g., generic *vs.* innovator formulation)
C. both A and B
D. none of the above
In Vivo Bioequivalence

Which Pharmacokinetic parameter represent both the rate and extent of absorption?

A. Tmax
B. Cmax
C. AUC (area under the plasma concentration curve)
D. All of the above
ANALYTICAL COMPONENT OF BIOEQUIVALENCE INSPECTIONS

Martin K. Yau, Ph.D.
GLP and Bioequivalence Investigations Branch
Division of Scientific Investigations
Office of Compliance, CDER

Objectives

- To show that the bioanalytical portion is an important component of BE studies and BE inspections
- To provide basic concept of validating a bioanalytical method for BA, BE, and PK studies
 - A method should be validated before it is used to analyze biological specimens (e.g., plasma, serum, etc.)
 - Scope of validation experiments
Objectives

- To show the concept of using calibration standards, and quality control samples (QCs) for accepting or rejecting an analytical run, during analysis of study specimens, to ensure accuracy of BA/BE/PK study data
- To provide examples of objectionable observations (483 items) in bioanalytical inspections.

Reminder

- BA/BE/PK study inspections are conducted at the clinical site and/or analytical site:
 - Clinical site
 - Clinical testing facility where subjects are dosed and blood samples are collected.
 - Analytical site
 - Analytical laboratory where biological specimens collected in the BA/BE/PK studies are analyzed for drug concentration.
Reminder: How is BE Demonstrated?

- **Same group of subjects** (n=18-36) are administered test (A) and reference (B) drug products in separate dosing periods.
- **Serial samples of biologic fluid** (plasma, serum, urine) are collected from subjects just before and at various times after dosing (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 9, 12, 14, 16, 20, and 24 hr post dose).

Reminder: How is BE Demonstrated?

- The samples are analyzed for drug and/or active metabolite concentrations.
- The drug concentration data are used to generate a concentrations-time profile (i.e., a systemic exposure profile).
Time Course of a Drug in the Body

- Test Product - "A"
- Reference Product - "B"

Please note that ...

- Precise and accurate determination of drug concentrations in biological specimens (e.g., plasma, serum) is critical in BA/BE/PK studies
Use FDA CPGM as a Guidance

- Compliance Program Guidance Manual (CPGM) 7348.001 - *In Vivo BE*
 - This Compliance Program Guidance Manual describes the procedures used by FDA staff in performing BA, BE, and/or PK study inspections.

CPGM 7348.001 - Attachment A

- **Part 1: Facilities and Procedures**
 - Applicable to clinical and analytical facilities
- **Part 3: Analytical data and operations**
 - Part 2: Clinical data and operations (already discussed)
Focus on the Bioanalytical Method Used in the Study

- The biological specimens are analyzed for drug and/or active metabolite concentrations using different types of bioanalytical methods
 - chromatographic assays (e.g., LC/MS/MS, HPLC)
 - Ligand binding assays (e.g., RIA, ELISA)
- The data generated are used in BA/BE/PK assessments to support IND, NDA, ANDA applications

Two Major Components

- Analytical method validation
- Analysis of biological specimens (e.g., plasma, serum, etc.) obtained in a study for analyte (drug) concentration
 - Reference paper: FDA Guidance for Industry, Bioanalytical Method Validation
Concept for Validation of Chromatographic Assays (e.g., LC/MS/MS, HPLC)

General Concept

- In a validation experiment, calibration standard (CS) and quality control samples (QCs) of different concentrations are prepared by spiking known amount of analyte and internal standards (IS) into blank biological samples (e.g. plasma or serum)
- CS and QCs are then processed according to the assay procedure developed
- Following sample processing (e.g. protein precipitation, liquid/liquid extraction, solid phase extraction, etc), a small volume (e.g., 100 ul) of CS and QCs in extracted samples are injected into analytical system (e.g. LC/MS)
General Concept (cont..)

- Note the relationship between instrumental response and analyte concentrations.
- Based on the relationship between instrument response to known concentrations of the analyte in the CS, a calibration (standard) curve is generated.
- Results of QCs are back calculated from the standard curve:
 - Back calculated QC concentrations are compared to the known QC concentrations (nominal values) to determine outcomes of the validation experiment.
Method Validation

- Validate assay selectivity, sensitivity, accuracy, precision, recovery, and dilution integrity of the assay
- Validate stability of analyte and its internal standard
- Method should be validated before it is used to analyze biological specimens (e.g., plasma, serum, etc.)

Assay Selectivity

- Selectivity is the ability of an analytical method to differentiate and quantify the analyte in the presence of other components in the sample.
- To validate:
 - use blank samples in appropriate matrix (e.g., plasma, serum, urine) from six sources.
 - examine chromatograms of all blank samples for interference (look for interference peak at the retention time of the analyte)
 - Selectivity should be ensured at the lower limit of quantification (LLOQ).
Assay Accuracy and Precision

- Validated Bioanalytical method should generate precise and accurate data
 - Accuracy: closeness of mean test results obtained by the method to the true value of the analyte (i.e., % deviation from the nominal value).
 - Precision: % Coefficient of variation from the mean value (i.e., % CV)
 - Note that data may be precise but inaccurate

Assay Accuracy and Precision

- Demonstrated by analysis of replicate sets of analyte samples of known concentrations (i.e., QC samples)

- Should be validated using a minimum of 3 QC concentrations in the range of expected concentrations (low, mid, and high concentrations; n=5 samples for each concentration)
Assay Accuracy and Precision

- For accuracy, the validation results (i.e., mean value) should be within 15% of the nominal value; within 20% for lower limit of quantification (LLOQ).
- For precision, validation results should not exceed 15% CV; <20% CV for LLOQ.
- Assay sensitivity is the lowest concentration that can be reliably quantified with accuracy and precision that met the above criteria (i.e., LLOQ).

Assay Recovery

- Recovery is the extraction efficiency of an analytical process reported as % of the known amount of an analyte carried through the sample extraction and processing steps of the method.
- Unextracted standard represent 100% recovery.
- Conducting recovery experiments is recommended.
- Assay recovery need not be 100%.
Assay Dilution Integrity

- Experiments conducted to assure the bioanalytical method remain precise and accurate when samples are diluted
 - Validate diluted samples (e.g., 2x, 5x, 10x) with high and low concentrations; 5 samples for each concentration
 - If validated, sample dilution should have no significant effect on assay accuracy and precision.

Stabilities Studies

- Stabilities of analyte and internal standard (IS) in study samples, calibration standards (CS), quality control (QC) samples, and stabilities of reagents used in an analytical method are critical data to insure data integrity
- Stability experiments should be conducted to demonstrate stability of analyte and IS.
Scope of Stability Studies

- Long term frozen storage stability study of analyte in matrix of biological specimens (i.e., study samples)
- Studies investigating other factors that may affect integrity of study samples:
 - freeze/thaw stability
 - bench-top stability
 - extract stability
 - auto-injector stability
 - Stock solution stability
- The above stability studies are normally conducted during assay validation

Long Term Frozen Storage Stability Study

- Cover the time period when study samples were collected to the time when study samples were analyzed
- Stability samples store under same condition as study samples (−20°C or −70°C)*
- Matrix of stability samples same as the study samples*
- Use same anticoagulant as in study samples*
- Documentation of:
 - Storage duration and conditions of stability samples*
 - Location of stability samples*
 - Failed stability studies*
- * also apply to other stability studies
Freeze/Thaw (F/T) Stability Study

- F/T cycles should cover the # of times study samples are subjected to re-assay
- F/T conditions same as processing study samples
- Documentation of F/T conditions

Bench-Top Stability Study

- Cover the time period that study samples are placed on bench-top before sample processing
- Conducted under same temperature for storage of study samples on bench-top (usually room temperature)
- Light sensitive compounds
- Documentation of temperature and time period when stability samples are placed on bench-top
Sample Processing Stability Studies

- **Extract stability study**
 - Cover time period after extraction to the time when study extract samples are placed in the auto-injector for assay
 - Conduct under temperature used for storage of extract samples (usually refrigerated temperature)
 - Documentation of temperature and time for storage of extract stability samples

- **Auto-injector stability study**
 - Cover duration of the longest analytical run

Stock Solutions Stability Study

- Stability of stock solutions for analyte and IS used for the preparation of calibration standards and QC samples need to be demonstrated
 - Assure assay linearity if peak height/area to IS ratios are used to evaluate stock solution stability.
- QC samples and calibration standards should be prepared from different stock solutions
Standard Curve in Stability Studies

- Freshly prepared standard curve is recommended particularly for long-term frozen storage and F/T stability studies
 - Calibration standards prepared from stock solutions:
 - freshly made
 - previously made, but within the time period demonstrated by stock solution stability data
- Standard curve should not be generated from calibration standards stored under the same condition as the stability samples

Reagents

- Reagents used in the analytical method should not be deteriorated or expired.
- Bottles containing reagents should be properly labeled and should include expiration dates.
Remember

- Source data generated in all validation experiments need to be documented
- Source data of validation experiments are usually recorded in laboratory notebooks or forms
- All source data are subjected to audit during a FDA inspection
- Follow the SOP for assay validation
- Summarized method used and results of all validation experiments in a Bioanalytical Method Validation Report

Analysis of Biological Specimens Obtained in Bioavailability (BA), Bioequivalence (BE) or Pharmacokinetic (PK) Studies
Analytical Run (or Batch)

- Biological specimens (study samples) collected in a study are analyzed in analytical runs.
- An analytical run is a complete set of analytical and study samples with appropriate # of standards and QCs for their validation.
- All study samples collected from a subject should be analyzed in the same analytical run; an analytical run may contain samples from one or more subjects.

Standard Curve

- A calibration (standard) curve is the relationship between instrument response to known concentrations of the analyte.
- Standard curve should be generated for each analyte in an analytical run and be used to calculate the concentration of the analyte in the biological specimens (i.e., study samples with unknown analyte concentration) in the run.
Standard Curve

- Standard curve should be prepared
 - in the same biological matrix as the samples to be analyzed
 - by spiking the matrix with different known concentrations of the analyte

- Sufficient # of calibration standards (CS) should be used to define the curve
 - 6 to 8 non-zero concentrations

- CS concentrations should be chosen based on the concentration range expected in a particular study

- Should use scientifically sound procedure to accept/reject a calibration standard point and/or a standard curve
 - Reject or exclude a standard point if result is >15% deviation from the nominal value; >20% for LLOQ
 - To accept a standard curve, 75% or a minimum of 6 non-zero standards should meet the above criteria.
Quality Control (QC) Samples

- A QC sample is a spiked sample with known concentration.
- QC samples are used to monitor the performance of a bioanalytical method, and to assess the integrity and validity (i.e., acceptability) of the results of the subject samples analyzed in an analytical run.

Quality Control (QC) Samples

- QCs replicated (at least once) at a minimum of 3 concentrations (low, mid, and high QCs) should be incorporated into each analytical run.
- QC concentrations should be representative of concentrations in study subject samples.
- QCs are processed and analyzed in the same way as subject samples.
- QCs should be interspersed throughout the entire analytical run.
Quality Control (QC) Samples

- A QC sample failed if the result is >15% deviation from the nominal value

- The results of QC samples provide the basis of accepting or rejecting an analytical run.

To accept an analytical run:
- At least 67% (e.g., 4 out of 6) of all QC samples in an analytical run should pass;
- At least 50% (e.g., 1 out of 2) of QC samples in each QC concentration should pass

- The minimum # of QC samples (in multiples of three) should be at least 5% of the # of subject samples or six total QC samples, whichever is greater.
Note that….

- Only data generated in an analytical run that meet the run acceptance criteria can be accepted for regulatory review.

Remember ….

- Source data generated in all analytical runs are subjected to audit during a FDA inspection
 - Document preparation of stock solutions of analyte, internal standard, and other reagent solutions
 - Document preparation of calibration standards and QCs used in analytical runs
 - Document processing of subject samples, calibration standards, and QCs in all analytical runs
 - Document # of analyst involved in sample processing and their roles
Remember ….

- Chromatograms of samples in all analytical runs need to be available
- Follow SOP for analysis of study samples
- Summarized method used and all analytical results in an Analytical Study Report

Other Areas Covered During the Inspection
Repeat Sample Analysis

- Important to establish an SOP for repeat analysis and for data acceptance/reporting criteria
- SOP should provide objective criteria or reasons for re-assay (e.g., sample processing errors, equipment failure, poor chromatography, inconsistent PK data, sample outside of assay range etc.)
- Samples do not meet the re-assay criteria should not be re-analyzed.
- The rationale for the repeat analysis and the report of the repeat analysis should be clearly documented.

Chromatograms

- Check sample chromatograms for
 - Significant interference
 • All acceptance chromatograms should be free of significant interference
 - Manual re-integration
 • Is there a reason to justify manual re-integration?
 - Integration consistency
 • Compare integration of calibration standards and QCs vs those of subject samples
 • Check integration of calibration standards and QCs with borderline results
Reference Standard Material

- Reference standard material of analyte and internal standard (IS) are used to prepare calibration standards and QC samples, and the purity of the reference standard can affect study data.
- Reference standards used should not be expired
 - USP reference standards
 - Current lots
 - Non-USP reference standards, need
 - Purity
 - Expiration date
 - Extension of expiration date need to be support with recertify certificate of Analysis

Incurred Sample Reproducibility (ISR)

- FDA in BE inspections found lack of reproducibility sometimes seen on reanalysis of study samples.
- ISR issue was discussed in Bioanalytical Conferences in the US
 - Crystal City III Conference in 2006 resulted in a white paper that emphasized the need for conducting ISR studies
 - AAPS ISR Workshop in Feb 2008 discussed how best to conduct ISR studies (AAPS Workshop on Current Topics in GLP Bioanalysis: Assay Reproducibility for Incurred Samples – Implication of Crystal City Recommendations)
Current Expectation on ISR for US Bioanalytical Labs

- Establish ISR Program.
- Acceptance criteria be explicit
 - Two-thirds ≤ 20% difference recommended for small drug molecules
 - Other criteria needs to be justified
- Sample size considerations
 - target percentage of total sample size
 - 5%-10% recommended
- Samples selection is done a priori
- If ISR failed, conduct investigation

Current Expectation on ISR for US Bioanalytical Labs

- Follow-up and resolution of ISR will be necessary
- When ISR fails, the bioanalytical data is on hold until an investigation is completed and follow up action is done
- Documentation is essential
Also check…

- Major pieces of analytical and storage instruments involved in a bioanalytical assay (e.g., HPLC systems, LC/MS/MS systems, balances, freezers, refrigerators, pipettes, centrifuges, etc)
 - Calibration and maintenance records
 - Repair/service records
 - Unexpected event logs.

- Site should establish SOPs for instrument calibration/standardization and maintenance schedule

Receipt and Storage of Study Samples

- Check the following areas:
 - Shipping invoice for date of receipt and conditions of study samples upon receipt (samples frozen?)
 - Accountability of all samples upon receipt (any missing samples or broken tubes?)
Receipt and Storage of Study Samples

- Check the following areas:
 - location (freezer id) for storage of study samples, and time and date when samples were put into the freezer
 - freezer for storage of study samples (freezer equipped with continuous temperature monitoring device and alarm?)
 - freezer temperature records over the period of sample storage.

Software used in Analytical Labs

- Software for instrument control, data acquisition, data processing
- Audit trail function in software should not be disabled. Audit trail can assure integrity of electronic records.
 - Ensure only authorized changes in electronic records have occurred
 - Reconstruct significant events of study conduct and/or data collection, to verify data quality and integrity
Software

- Be aware of system software security
 - Limited access (authorized staff only)
 - Individual account for each user
 - Limit the # of log-in attempts
 - Change user password at established intervals

Example of Inspection Observations
Example of Inspection Observations

- Inconsistencies between data reported to FDA and at the site
- Inadequate or missing validation of assay with respect to assay selectivity, sensitivity, accuracy, precision, dilution integrity, and stabilities of analyte and its internal standard
- Failure to employ calibration standards, and QCs

Example of Inspection Observations

- Lack of objective criteria for acceptance/rejection of calibration standards, QCs
- Samples were allowed to remain for prolonged periods of time without proper storage.
Example of Inspection Observations

- Failure to maintain source data
 - For example, source data written on scrap paper and/or discarded in trash after transferring to analytical document
- Inadequate or no written procedures for receipt and handling of study drug
- Inadequate or missing standard operating procedures

Example of Inspection Observations

- Long term frozen (-20º) stability data for analyte are not adequate to cover the storage duration of subject samples.
- Experiment to validate F/T stability did not mimic sample handling conditions.
Example of Inspection Observations

- The firm failed to demonstrate stability of analyte during F/T cycles. Experiments to validate F/T stability could not be supported by notebook entries, specifically the duration and frequency of freezing and thawing of QC samples.

Example of Inspection Observations

- The firm failed to demonstrate stability of the analyte stock solution. Experiments to demonstrate stock solution stability was not performed.
- The reference standard used for preparation of standard and QCs was from Lot D. The source of this lot is unknown. The firm cannot provide the purity and expiration date of Lot D.
Questions?
Part III.

Summary of Round Table Discussion
Summary of Round Table Discussion : Gaps and Challenges for Implementation, and Suggestion for Future Cooperation

A round table discussion at the closing of the “Advanced Workshop on GCP/ Clinical Research Inspection” provided an opportunity for open comments or suggestions from all facilitators and participants to identify gaps and challenges for implementation, and suggestions for future cooperation.

The comments from facilitators and participants are listed below

Gaps and Challenges for Implementation
- Adopted and implemented the same ICH Good Clinical Practice Guideline, but economies and country have different measures to regulate investigational drugs and their clinical trials.
- Limited numbers of trained inspectors
- The GCP Inspection of Clinical Trials do not yet exist in a few economies and are not fully-functional in some economies
- Most economies do not have GCP inspection experts, who could facilitate on the job training in their economies.

Suggestion for Future Cooperation
- The training course should continue every year or every other year to update and sustain knowledge, and provide experience sharing, and networking opportunities.
- The training and experience sharing opportunity could be a back to back meeting at APEC Life Sciences Innovation Forum. APEC should provide support, e.g. technical support, experts from competent drug regulatory agencies, and some financial support.
- Facilitators from developed economies, i.e. US FDA, agree to communicate with other economy’s regulators when their inspectors come to inspect clinical trials abroad. This could be an opportunity for local inspector to observe or practice GCP inspection together with experienced inspectors. The requesting economies should write to US FDA to specify their contact persons.
- Suggested future topics of interests are
 - Updates on implementation and regulation of clinical trials
- Hand-on exercise on Bioequivalence Study Inspection
- Hand-on exercise of GCP inspection for clinical trials using electronic CRF
Part IV.

List of Participants
List of Participants

1. **Name:** Abdulmohsen H. Al Rohaimi
 Organisation/Affiliation: Saudi Food and Drug Authority
 Address: 3292 Northern Ring Rd. – An nafel District – Riyadh 13312-6288
 Daytime Phone: +96 61 2759222 Ext:1339
 Fax: +96 61 2757195
 Email: ahrohaimi@sfda.gov.sa

2. **Name:** Benjamin Ing-Tiau Kuo, MD, Dr.PH, CIP
 Organisation/Affiliation: Joint IRB –Taiwan
 Address: #201, Sec 2, Shih-Pai Rd. Taipei, Taiwan
 Daytime Phone: +886-2-2875-7633
 Fax: +886-2-2873-7136
 Email: Benjamin_kuo@jirb.org.tw

3. **Name:** Chao-Yi Wang
 Organisation/Affiliation: Department of Health/Chinese Taipei
 Address: 6F, No. 80 Linsen N. Rd., Taipei, 104, Taiwan
 Daytime Phone: +886-2-85906972
 Fax: +886-2-25233303
 Email: pajoyce@doh.gov.tw

4. **Name:** Farida Anwar
 Organisation/Affiliation: National Agency of Drug and Food Control Indonesia
 Address: Jl. Percetakan Negara No.23 Jakarta Pusat
 Daytime Phone: +6221- 4245459 ext. 106
 Fax: +6221- 4243605
 Email: standardterapetik@yahoo.com ida_sasongko@yahoo.com

5. **Name:** Foo Yang Tong
 Organisation/Affiliation: Health Sciences Authority, Singapore
 Address: 11 Biopolis Way #11-03 Helios Singapore 138667
 Daytime Phone: 65 6866 3442
 Fax: 65 6478 9034
 Email: Foo_Yang_Tong@hsa.gov.sg

6. **Name:** Hans Vásquez
 Organisation/Affiliation: Dirección General de Medicamentos, Insumos y Drogas – DIGEMID (National Direction of Drugs and Medical Device). Ministerio de Salud
 Address: Calle Odriozola 103- Of 404. San Isidro (Lima 27). Perú
 Daytime Phone: +51-1-4229200 Ext 404
 Fax: +51-1-4228455
 Email: hvasquez@hsa.gov.sg

 Email: hvasquez@digemid.minsa.gob.pe
7. Name: **Dr. Kamaruzaman Saleh**
Organisation/Affiliation: National Pharmaceutical Control Bureau, Ministry of Health Malaysia
Address: National Pharmaceutical Control Bureau, Ministry of Health Malaysia, Lot 36 Jalan Universiti, 46730 Petaling Jaya, Selangor, Malaysia
Daytime Phone: +603-78835581
Fax: +603-79551030
Email: Kazman@bpfk.gov.my

8. Name: **Marle B. Koffa**
Organisation/Affiliation: DOH League of Pharmacist, Philippine Pharmaceutical Association
Address: 10523 Dangka St., Mayondon, Los Baños, Laguna
Daytime Phone: +639178342956(Mobile); 006328094390 Loc. 8108
Fax: -
Email: koffamae@yahoo.com

9. Name: **Miguel Angel Gonzalez Guerra**
Organisation/Affiliation: Instituto De Salud Publica De Chile
Address: Avenida Maraton 1000 Nuñoa Santiago
Daytime Phone: 56-2-3507638
Fax: 56-2-3507574
Email: magonzalez@ispch.cl

10. Name: **Myung-ah Chung**
Organisation/Affiliation: Korea Food and Drug Administration
Address: #231 Jinheung-no Eunpyung-gu, Seoul 122-704, Korea
Daytime Phone: 82-2-380-1713, 4
Fax: 82-2-359-6962
Email: mychung@kfda.go.kr

11. Name: **Noverita Pak Pak**
Organisation/Affiliation: NATIONAL AGENCY FOR DRUG and FOOD CONTROL
Address: PERCETAKAN NEGARA 23 JAKARTA – INDONESIA
Daytime Phone: 021-4245459 Ext 116
Fax: -
Email: nvrtpurba@yahoo.com

12. Name: **Quang Nguyen Ngo**
Organisation/Affiliation: DEPARTMENT OF SCIENCE AND TRAINING-MINISTRY OF HEALTH-SECRETARY OF ETHICAL COMMITTEE – MoH of Vietnam
Address: 138 A GIANGVO- HANOI- VIETNAM
Daytime Phone: +84 91455 8118
Fax: + 84 4 273 2243
Email: quangbyt@yahoo.com
13. Name: Rusri Diyana, S.Si
Organisation/Affiliation: National Agency of Drug and Food Control Indonesia
Address: Jl. Percetakan Negara No.23 Jakarta Pusat
Daytime Phone: +6221- 4245459 ext. 106
Fax: +6221- 4243605
Email: standardterapetik@yahoo.com, dyn_cute2000@yahoo.com

14. Name: Tito L. King, Jr.
Organisation/Affiliation: Bureau of Food and Drugs, Philippines
Address: Civic Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila, Philippines
Daytime Phone: 809-43-90 loc. 8105
Fax: -
Email: noydoc@yahoo.com

15. Name: Van Do Duc
Organisation/Affiliation: HANOI MEDICAL UNIVERSITY – VICE CHAIRMAN OF ETHICAL COMMITTEE – MoH of Vietnam
Address: 138 A GIANGVO-HANOI-VIETNAM
Daytime Phone: + 84 903289155
Fax: + 84 4 273 2243
Email: ddvan@fpt.vn

Organisation/Affiliation: Department of Pharmaceutical Services, Ministry of Health, Brunei Darussalam
Address: Department of Pharmaceutical Services, Ministry of Health, Commonwealth Drive, BB3910, Brunei Darussalam
Daytime Phone: +673 2230001 / +673 8729161
Fax: +673 2230041
Email: zanatul_a_zainin@yahoo.co.uk

17. Name: Ms Akanid Wapeewuttikorn
Organisation/Affiliation: International Affairs and Investigational Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7061
Fax: +66 2 591 8390
Email: akanid@fda.moph.go.th
18. Name: **Ms Charunee Krisnaphan**
Organisation/Affiliation: International Affairs and Investigational Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7061
Fax: +66 2 591 8390
Email: charunee@fda.moph.go.th

19. Name: **Mr Morakot Papassiripan**
Organisation/Affiliation: Biologics Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7028
Fax: +66 2 591 8463
Email: morakot@fda.moph.go.th

20. Name: **Ms Patchara Nunthamongkol**
Organisation/Affiliation: New Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 5907196
Fax: +66 2 5907204
Email: -

21. Name: **Ms Pornpak Wongthongtham**
Organisation/Affiliation: New Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 5907196
Fax: +66 2 5907204
Email: be_study@fda.moph.go.th

22. Name: **Dr Pravan Suntharasamai**
Organisation/Affiliation: Thai FDA; Mahidol University
Address: 420/6 Rajvithi Road, Bangkok 10400
Daytime Phone: +66 81 827 5005
Fax: +66 2 354 9174
Special Dietary Needs: No chilly
Email: tmpst@mahidol.ac.th

23. Name: **Dr Sirinart Vasanavathana**
Organisation/Affiliation: Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7155
Fax: +66 2 591 8463
Email: sirinart@fda.moph.go.th
24. Name: Mrs Tasanee Lorchaivej
Organisation/Affiliation: Biologics Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7028
Fax: +66 2 591 8463
Email: nang@fda.moph.go.th

25. Name: Dr Tharnkamol Chanprapaph
Organisation/Affiliation: New Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7196
Fax: +66 2 590 7204
Email: tankamol@fda.moph.go.th

26. Name: Mrs Yaowapa Srabua
Organisation/Affiliation: International Affairs and Investigational Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7167
Fax: +66 2 5918390
Email: yaobuna@fda.moph.go.th

27. Name: Dr Yuppadee Javroongrit
Organisation/Affiliation: International Affairs and Investigational Drug Section, Drug Control Division, Food and Drug Administration, Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66 2 590 7061
Fax: +66 2 5918390
Email: yuppadee.javroongrit@fda.moph.go.th

List of Observers

28. Name: Dr Suvimol Niyomnaitham
Organisation/Affiliation: Faculty of Medicine Siriraj Hospital
Address: 2 Prannok Rd. Bangkoknoi Bangkok 10700, THAILAND
Daytime Phone: +66 2 411 5026
Fax: +66 2 411 5026
Email: jeabniyom@hotmail.com

29. Name: Dr Weerawadee Chandranipapongse
Organisation/Affiliation: Faculty of Medicine Siriraj Hospital
Address: 2 Prannok Rd. Bangkoknoi Bangkok 10700, THAILAND
Daytime Phone: +66 2 419 7000 Ext 7576, 7565
Fax: +66 2 411 5026
Email: siwcp@mahidol.ac.th
30. Name: Ms Wilasinee Pumsanguan
Organisation/Affiliation: International Affairs and Investigational Drug Section,
Drug Control Division, Food and Drug Administration,
Ministry of Public Health, Thailand
Address: Tiwanont Road, Mueng, Nonthaburi 11000, THAILAND
Daytime Phone: +66-2-5907061
Fax: +66-2-5907061
Email: daisy_149@hotmail.com
Part V.

Questionnaires Survey Results
Questionnaire Survey Results

Project Code: CTI36/2008

Capacity Building for Drug Regulatory Agencies on Clinical Trial and Good Clinical Practice (Phase 2)

Advanced Workshop on GCP/ Clinical Research Inspection

Bangkok, Thailand, 2-6 March 2009

Part A for Participants

Number of respondents was 22 among 27 participants.

Question (a): How have you or your economy benefited from the project?

- The information given during the first and second day by Dr Lepay and Dr Yau is useful in the review of Basic GCP Inspection workshop and approach to Bioequivalence studies/Inspection. Practical Experience through the mock inspection experience help to reinforce the “how” to perform an inspection. It was really helpful to have mentors to guide the process.

- The training from both the basic and advanced workshops were form the reference to implement the GCP inspection program in my economy

- It is very helpful to my career. I had great chance to learn more concrete GCP inspection through the mock inspection

- This project will help us to build inspection that comply with GCP and provide training to our team in my economy

- This workshop is enable us to prepare an action plan which is needed to implement of GCP inspection according to presentation in the lecture and afterward it could also develop our institution.

- We can learn and share experience on GCP with colleague in APEC region

- We will improve the GCP inspection and its procedure

- Will improve the roles and responsibilities of regulatory authority in particular the harmonization of inspection activity
- Mock inspection exercise is very beneficial
- The patient, who participate in the trial are protected for possible harm that may be caused by investigational drug in clinical trial. In addition, the reliability, accuracy on clinical data generated by clinical trial in APEC are more trustworthy.
- Bioequivalence study inspection program will promote the quality of generic drug
- We understand the scope of inspection better
- We learn GCP inspection skill from US FDA and Health Canada, but it is still too short that I can not see any progress at this moment

Question (b): What new skills, knowledge, or value have you gained?
- Apart from the information sharing, the presentations and mock inspections, the exchange of information among the participating economies and facilitators (US FDA, Health Canada and the 3 industry representatives) have been obviously valuable to harmonize as well as to boost the capability for this regional agencies to improve the GCP inspection work or better understand the process and approach. Importantly, also the contacts gained at this workshop would be helpful as a resource when follow-up is required in this area
- The elements of preparation what to work during inspection and to make a report after an inspection
- The section on bioequivalence study really provide a further in depth how to do inspection for bioanalytical part
- Experience sharing between economies and country
- Though my economy has already done a lot of GCP inspection, but it is somewhat different from US FDA and Health Canada. I think especially we try to do foreign inspection, it is a good experience for me to learn from these mentors
- We learned more about 15 key elements of WHO GCP
- We learned skills GCP inspection step by step i.e. how to plan the inspection, how to inspect, what to be inspected and what to do after gathering the inspection and exhibits
- We learned the critical points in GCP and BE inspection and report.
- We learned the team work
- This workshop provided the hands-on mock inspection in different economy where having different culture and approach. However, I learned that there is no different in the implementation of GCP inspection program
Question (c): What, if any, changes do you plan to pursue in your home economy as a result of the project?

- To establish a regulatory GCP inspection initiative in my economy
- To prepare and improve my economy’s action plan for GCP inspection of both clinical research and bioequivalence study
- To develop the procedure and scheme for GCP inspection
- To train GCP inspection in my economy
- To review the current inspection manual and SOP
- To establish the GCP inspection team
- To share knowledge gained from this workshop and experience sharing session
- To help more clinical research centers to be compliant with GCP guideline
- The conduct of GCP inspection for clinical trial and bioequivalence study should be mandated by legal support

Question (d): What needs to be done next? How should the project be built upon?

- As more clinical trials are increasingly being done in our region, the capacity building is very important, more training should be conducted to develop this area
- The present format of the project is good containing both theory and practical. Having a mentor system on the training is very helpful
- We need more practical workshop with more detail and more time for hands-on exercises
- Next training might provide more examples on observations from GCP inspection
- Next project may do mock inspection in other economies to see different economies’ GCP practicing
- Further training on GCP inspection of electronic CRF and Bioequivalence study, and Pharmacogenomic guideline
- Next training should give more time for mock inspection at the trial site
- Next project may provide training for SOP of IEC/IRB
- The sharing of experience is important and useful
- Should maintain our network of inspectors
- When US FDA inspectors go to perform GCP inspection internationally, please allow the local GCP inspectors to observe or help at the inspection because it would be one of the effective way to learn by practicing with experienced inspector
- Next training may be Basic Principle of Good Laboratory Practice Inspection(GLP) and its inspection technique
- In my economy, the working group should be formed to plan the law and enforcement, human development and budget

Question (e): Is there any plan to link the project’s outcomes to subsequent collective actions by fora or individual actions by economies?

- To pursue to set a GCP group in the APEC Life Sciences Innovation Forum or ASEAN pharmaceutical development group, where to develop GCP inspection in the region
- Encouraging APEC to sustain this and perpetuation of clinical trial/ GCP oversight networking beyond this workshop. For example, follow up workshop after (or before) some future APEC LSIF conference e.g. 2010 or another stand-alone GCP/ Inspection workshop in 2010 (or early 2011) as member economies follow-through with projected GCP inspection (implementation)
- To establish network among APEC in this area or at least bilateral collaboration with nearby economies
- Share information with inspector about GCP and other regulation linked
- To develop the regulatory system to ensure the protection of patient safety and promote best quality clinical trials in my economy

Question (f): Please use the same scale to rate the project on an overall basis.

- [5] (good) : 17 (77%)
- [4] : 5 (23%)
- [3] : 0
- [2] : 0
- [1] (poor) : 0

Question (g): What is your assessment of the overall effectiveness of the project?

- The workshop has a high impact on the ability of the regional authorities to force a common understanding in this project
- The practical aspect of the inspection really provides further understanding as discussed in the theory part
- The workshop is very effective and well organized, whereby it provided us with the essential knowledge and great opportunity to share experiences both technical and regulatory issues
- This project provides a very constructive scheme in providing the basic knowledge, advanced knowledge, and practice in conducting GCP inspection
Question (h): Was the project content: (Check One):
- Just Right (20)
- Too Detailed (0)
- Not Detailed Enough (2)
- N/A(0)

Question (i): Please provide any additional comments. How to improve the project, if any?
- To be able to have more participants to join the workshop
- To prevail questionnaire at the beginning of the workshop
- It is not easy to fill out this questionnaires
- To provide more time for on site mock inspection exercise e.g. 3 days
- To establish inspection network among APEC economies
- To add the topic of electronic system validation and inspection
- To provide on-site mock inspection exercise for Bioequivalence study

Part B for Facilitators/ Speakers/ Mentors

Number of respondents was 7 among 7 speakers.

(a): Do you think the project achieved its objectives? What were the project’s results/achievements?

- The project achieved its objectives
 - Review of basic workshop (GCP Inspection) material
 - Updates from participating economies on GCP Inspection
 - Introduction to Bioequivalence / BEQ Inspection
 - Full mock small group inspection exercise
- The comments from the participants regarding the lectures and site visits were very positive and all expressed that they learned a lot about bioequivalence inspection program
- Interaction from GCP regulators and sponsor personnel from economies and country
- Agencies with little or no experience in regulatory inspection conduct gain knowledge from more experienced regulators
- The mock inspection exercise was completed. Hopefully participants have a good understanding of inspection process
- Experiences have been shared.
- Closed links between agencies are being forced which must be a good thing
(b): Were the attendees the most appropriate target group?
- The attendees were the most appropriate target group
- Broad representative of many APEC economies and their regulators involved in clinical trial oversight
- They are all knowledgeable about principles of clinical trials, compliance, and GCP

(c): What is your assessment of the overall effectiveness of the project?
- Highly effective for
 - Information exchange
 - Education on current clinical trial oversight issue
 - Collaborative training by regulators and industry
- The hands-on training an inspection technique is the most effective approach to somebody keen to start as an inspector to learn the “nuts & bolts” of the trade. The keen interest of the participants confirms this assessment.
- It was an excellent initiative. I have gain valuable experience from attendance here this week
- Opportunities for industry auditors and regulatory inspectors to discuss and indeed perform train on inspection are rare, if unknown. I would be very keen to see more activity of this type
- The overall project was well organized and well planned.
- The participants were well represented

(d): Was there any room for improving the project? If so, how?
- Time allotted could be 1 day longer for hands-on: Clinical Trial and Bioequivalence activities
- Follow-up is needed, i.e. in 12-24 month, economies participating in this workshop should be able to show their progress (identified inspectors, inspection SOPs in place, site inspections conducted, and then another hands-on workshop would be beneficial whereas the mentors act as observers rather than trainers
- Perhaps more time to prepare write up the inspection activity. I had a group of 4 inspectors who had never been to a site and found myself having not only to cover off the basis of an audit/inspection but also some very basic GCP aspect. Many more time would have given me the opportunity to do training more thoroughly
- More time for inspection, report writing, and reporting
(e): **Any other suggestions?**

- Encouraging APEC to sustain this and perpetuation of clinical trial/ GCP oversight networking beyond this workshop. For example, follow up workshop after (or before) some future APEC LSIF conference e.g. 2010 or another stand-alone GCP/ Inspection workshop in 2010 (or early 2011) as member economies follow-through with projected GCP inspection (implementation)

- Economies could ask commercial sponsors to conduct at least an audit on their territories and then have inspectors to join the sponsor auditors for training

- Some etiquette training for new inspectors to ensure skills of diplomacy and courtesy are observed which asking questions of investigator site and monitoring staff.