Malaysian Financial Mechanisms for Renewable Energy (RE) & Future Direction

Ir. Ahmad Hadri Haris
hadri@ptm.org.my
Malaysia Energy Centre (PTM)
APEC Workshop
30th March - 1st April 2009, Honolulu Hawaii

Malaysia

- Population: 27.7 million (2008) (Malay, Chinese, Indian, others)
- Land size: 330,000 km²
- GNI per capita: US$7,479 (GDP: 6% - 0.1%)
- Maximum electricity demand:
 - 13.6 GW (2005)
 - 20 GW (2010)
- Installed electricity capacity:
 - 19.2 GW (2005)
 - 25.3 GW (2010)
- Electricity generation mix:
 - 2005: 70% NG; 22% coal; 6% hydro; 2% oil
 - 2010: 56% NG; 36% coal; 6% hydro; 0.2% oil; 1.8% RE

Malaysian Electricity Supply Industry

- Cabinet
 - Ministry of Energy, Water & Communications (NEWMU)
 - Economic Planning Unit (EPU)
 - Prime Minister’s Department
 - Ministry of Finance
 - Malaysia Energy Commission (ST)
 - Independent Power Producers (IPPs)
 - Co-generations
Malaysia Energy Policy

To ensure provision of adequate, secure and cost-effective energy supplies by developing indigenous energy resources, both non-renewable and renewable, using the least-cost options and diversifying supply resources within and outside the economy.

To promote the efficient utilisation of energy and the elimination of wasteful non-productive patterns of energy consumption.

To minimise the negative impacts of energy production, transportation, conversion, utilisation and consumption on the environment.

Trends of Fuel Sources for Power Generation

Untapped Potential: Solar Power

- Suitable building roof surfaces*:
 > 65 million m² x 100 Wp/m² = > 6,500 MWp
 * 2.5 million houses (42%) + 40,000 commercial buildings (5%)

- PV covering 0.6% (786 km²) land of Peninsular Malaysia can provide enough electricity supplied by TNB in 2007 (86.5 TWh)
5th Fuel Policy: RE Potential & Status Quo

Support Mechanism
- Approvals & licenses
- REPPA: RM/kWh 0.21 (biomass, biogas); 0.17 (hydro), net-meter (PV)

Promotion Mechanisms
- Pilot projects & case studies
- Capacity building & lessons
- Financing & policy developments

RE Support & Promotion Mechanisms

Support Mechanism
- Approvals & licenses
- REPPA: RM/kWh 0.21 (biomass, biogas); 0.17 (hydro), net-meter (PV)

Promotion Mechanisms
- Pilot projects & case studies
- Capacity building & lessons
- Financing & policy developments

Key Issues Affecting RE

1. Market failure exists
2. Constraints
3. Arbitrary policy setting
4. Limited oversight
5. Poor institutional framework
6. Absence of regulatory frameworks
7. Lack of institutional framework

Needs for a New RE Policy & Action Plan

<table>
<thead>
<tr>
<th>Reason</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To address current market failure</td>
</tr>
<tr>
<td>2</td>
<td>To provide long term sustainability (avoid start and stop policy)</td>
</tr>
<tr>
<td>3</td>
<td>To stimulate a new growth industry</td>
</tr>
<tr>
<td>4</td>
<td>To recognize the importance of the environment as an economic growth contributor</td>
</tr>
<tr>
<td>5</td>
<td>To develop human capital resources particularly in the field of R&D in RE technologies</td>
</tr>
<tr>
<td>6</td>
<td>To improve the coherence of current policy</td>
</tr>
</tbody>
</table>
New RE Policy & Action Plan

Vision
- Promoting the utilisation of independent renewable energy sources to contribute to sustainable national energy supply, society and sustainable socio-economic development.

Objectives
1. To increase RE contribution to the national power generation mix;
2. To facilitate the growth of the RE industry;
3. To reduce renewable RE generation costs;
4. To ensure the environmental sustainability of generation, and;
5. To enhance awareness among the public and improvement of RE.

Strategic Threads
- Thread 1: Introduction and Implementation of Appropriate Regulatory Framework
- Thread 2: Introduction and Implementation of Adequate Financial Instruments
- Thread 3: Institutional and Market Developments
- Thread 4: Knowledge and Research for Development
- Thread 5: Implementation and Improvement of Action Plan

Choices: RE Support Mechanism

Feed-in Tariff (FiT): The Choice for RE Regulatory Framework
- A mechanism that allows electricity that is produced from RE resources to be sold to power utilities at a fixed premium price and for specific duration.
- Provides a conducive and secured investment environment which will make financial institutions to be comfortable in providing loan with longer period (> 10 years).
 - Provides fixed revenue stream for installed system
 - Only pays for electricity produced – promotes system owner to install good quality and maintain the system
 - With suitable degression rate, manufacturers and installers are promoted to reduce costs while maintaining quality
 - Disadvantage: does not address first cost barrier

Verifications of FiT Effectiveness (selected)
- **Stem Review Report:**
 - Sir Nicholas Stern stated that “Comparisons between deployment support through tradable quotas and feed-in tariff price support suggest that feed-in mechanisms achieve larger deployment at lower costs.”
- **UNDP-GEF Report: Promotion of Wind Energy - Lessons Learned From International Experience and UNDP-GEF Projects**
 - “Feed-in tariff policies have been very effective in Germany, Spain and Denmark, leading to the world’s first, second and fifth installed wind energy capacities.”
- **International Energy Agency: Deploying Renewables - Principles for Effective Policies**
 - “Feed-in Tariffs are more effective and cheaper than quotas for Renewable Energy”
- **Ernst & Young Report: Renewable Energy Country Attractiveness Indices**
 - “Feed-in Tariffs are cheaper than Trading System”
Evidences of FiT Effectiveness

- Germany revolutionised RE deployment with the implementation of EEG (RESA) in 2000
- Germany records exponential RE growth since 2000 (due to no limit of annual capacity)
- By 2007, Germany’s FiT model replicated by 20 EU Member States
- By 2007, EEG generates national economic benefits equivalent to Euro 9.4 billion VS cost of Euro 3.3 billion

Critical Factors for an Effective FiT Mechanism

- Access to the grid must be guaranteed. Utilities must be legally obliged to accept all electricity generated by RE private producers.
- FIT rates must be high enough to produce a return on investment plus a profit (not excessively) to act as an incentive.
- FIT rates must be fixed for a long enough period (typically 20 years) to give certainty and provide businesses with clear investment environment.
- There must be adequate “deggression” for the FIT rates to promote cost reduction to achieve “grid parity”, where an annual stepwise reduction in tariffs by a certain percentage is mandated.
- Adequate fund is created to pay for the FIT rates (or the incremental cost) and guarantee the payment for the whole FIT contract period.
- There must be constant monitoring and progress reporting.

Determining FIT Rates (Malaysia)

Biomass
- Capex (investment cost)
- Loan rates (8.8%), period (15 years)
- Fuel: requirement (230,000 t/yr), prices, transport charges
- Costs: O&M, depreciation, insurance
- Revenue: FIT rates, duration (16 yrs), capacity factor (70%), other revenue
- Annual cost increment (3%): fuel, transport, O&M, insurance
- IRR, SPB, cash-flow

Solid waste
- Capex (investment cost)
- Loan rates (8.8%), period (15 years)
- Fuel: requirement (3,000 t/day), prices, transport charges
- Costs: O&M, depreciation, insurance
- Revenue: FIT rates, duration (21 yrs), capacity factor (70%), other revenue (tipping fee, recycling)
- Annual cost increment (4%): fuel, transport, O&M, insurance
- IRR, SPB, cash-flow

Solar PV
- Capex (investment cost - RM22/Wp avg)
- Loan (80%): rates (6%), period (15 years)
- Costs: O&M, depreciation, insurance
- Revenue: FIT rates, duration (21 yrs), capacity factor (13%)
- Annual cost increment (3%): O&M, insurance
- SPB, IRR, cash-flow

Please refer to www.onlinepact.org (World Future Council)
FIT Rates = Empirical Values

FIT revision: provides opportunity to adjust FIT prices & depression towards objective/ target

Grid Parity

- FIT changes to net-metering when grid-parity is achieved (real cost + external cost for fossil fuel and nuclear)

Important to prepare local RE industry prior to start of FIT regulatory framework
Towards benefiting local industry
Promotes quality & cost reduction
Meeting expectation
Healthy growth

<table>
<thead>
<tr>
<th>RE Technologies</th>
<th>Germany 2007</th>
<th>Italy 2009</th>
<th>Malaysia 2009/2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail Electricity Tariff (average)</td>
<td>0.28 US$/kWh</td>
<td>0.24 US$/kWh</td>
<td>0.08 US$/kWh (Subsidised)</td>
</tr>
<tr>
<td>Solar PV</td>
<td>2.4 x retail</td>
<td>2.7 x retail</td>
<td>5.5 x retail</td>
</tr>
<tr>
<td>Wind</td>
<td>0.4 x retail</td>
<td>1.7 x retail</td>
<td>1.1 x retail</td>
</tr>
<tr>
<td>Biomas</td>
<td>0.5 x retail</td>
<td>1.2 x retail</td>
<td>1.1 x retail</td>
</tr>
<tr>
<td>Biogas</td>
<td>0.4 x retail</td>
<td>1.0 x retail</td>
<td>1.1 x retail</td>
</tr>
<tr>
<td>Mini-hydro</td>
<td>0.5 x retail</td>
<td>1.2 x retail</td>
<td>0.8 x retail</td>
</tr>
<tr>
<td>Cost to consumers (% of retail tariff)</td>
<td>4.8%</td>
<td>7.8%</td>
<td>2% (proposed)</td>
</tr>
</tbody>
</table>
C2: financial & technical support
C1, C2: quality installations (ISP accredited training)
C4: quality products,
C1: quality services
C1: consumer awareness & appreciation
C3: grid access, net-meter, license
C2: monitoring
C1: policy makers
C3: RE-FIT (study)

Competency Training
- ISP accredited training
- 10 days: theory, practical, exam

Approved Service Provider Scheme
- License valid for 1 year with annual review.
- Only for companies.
- Staff passed ISP training.
- Use certified electrician.
- Company shall be financially sound.
- Company shall have workers insurance and public liability insurance.
- Company shall follow APVSP Industry Best Practice Guidelines.
- Company shall abide by the APVSP Code of Conduct.

Complemented by Quality Assurance Scheme

Quality Control Centres
Inverter Quality Control Centre
Mounting Structure Quality Control Centre
Performance Monitoring

Communicate Internationally
- Exchange of knowledge & lessons learned
- Accelerate learning process & minimise mistake
- Friendship

Awareness & Understanding – Most Critical

Towards achieving RE Targets

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar PV</th>
<th>Solid Waste</th>
<th>Mini Hydro</th>
<th>Biogas</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>375 MW (6%)</td>
<td>54 TWh (3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>2,005 MW (15%)</td>
<td>11.2 TWh (5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>3,484 MW (13%)</td>
<td>25.6 TWh (13%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative RE Installed Capacity

2050: 11.5 GW (34%) 25.6 TWh (13%)
Comparison between FiT and Quota System

<table>
<thead>
<tr>
<th>Feed-in Tariff (FIT)</th>
<th>Renewable Portfolio Standards (RPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven to be the cheaper option</td>
<td>Less successful in achieving targets (e.g. UK, Sweden)</td>
</tr>
<tr>
<td>Performance based incentive - encourages reliable operation</td>
<td>Involves tradable green certificates which are unpredictable in prices</td>
</tr>
<tr>
<td>Provides long-term investment security and returns</td>
<td>Must have a penalty system</td>
</tr>
<tr>
<td>Creates stable and predictable revenue to pay for cost of investment</td>
<td>Requires strong enforcement mechanisms</td>
</tr>
<tr>
<td>Depression and periodic reviews allow and stimulate price reductions due to technological advances (e.g. solar PV)</td>
<td>No clear identification of source of funds to meet additional costs</td>
</tr>
<tr>
<td>Simple to implement – specific RE developments and FIT costs can be pre-determined and planned in advance</td>
<td>Unpredictable RE prices and costs because of bidding and trade</td>
</tr>
<tr>
<td>Encourage smaller and distributed power producers and new industries – greater number of jobs</td>
<td>Usually only one RE technology would be promoted</td>
</tr>
<tr>
<td></td>
<td>Usually only bigger company (with resources) would be interested to become developers</td>
</tr>
</tbody>
</table>